我有一组数据:
Abweichung BW_Gesamt
76 236 1137747
77 2000 1149019
78 2000 1227972
79 2331 1346480
80 4000 2226810
81 5272 2874114
82 8585 4418070
83 15307 5389585
现在我想把它们分组。困难在于我可以通过输入x轴的MIN / MAX和组的数量来应用灵活的中断。因此,它会将数据切割成“MYSCHRTW”宽的组:
bins <- 4 # Amount of groups
MYMIN <- 0
MYMAX <- 20000
MYSCHRTW <- (-MYMIN+MYMAX)%/%bins # Wide of one group 5000
GRENZEN <- seq(from = MYMIN, by = MYSCHRTW, length.out = bins)
GRENZEN <- c(GRENZEN, MYMAX+1) #Brakes: 0 5000 10000 15000 20001
我使用剪切功能:
setDT(mydata)[ , Gruppen := cut(mydata$Abweichung,breaks=GRENZEN,dig.lab = 5)]
问题是,缺少一个组,因为它是空的,因此没有显示。在没有该组的情况下绘制数据会使结果产生偏差 那么如何添加组(10000,15000),与Abweichung和BW_Gesamt 0:
Abweichung BW_Gesamt Gruppen
1: 236 1137747 (0,5000]
2: 2000 1149019 (0,5000]
3: 2000 1227972 (0,5000]
4: 2331 1346480 (0,5000]
5: 4000 2226810 (0,5000]
6: 5272 2874114 (5000,10000]
7: 8585 4418070 (5000,10000]
8: 15307 5389585 (15000,20001]
答案 0 :(得分:1)
好的,我不知道它是否有效但有办法:
library(data.table)
您使用的数据:
mydata <- data.table(Abweichung = c(236,2000,2000,2331,4000,5272,8585,15307),
BW_Gesamt = c(1137747,1149019,1227972,1346480,2226810,2874114,4418070,5389585))
> mydata
Abweichung BW_Gesamt
1: 236 1137747
2: 2000 1149019
3: 2000 1227972
4: 2331 1346480
5: 4000 2226810
6: 5272 2874114
7: 8585 4418070
8: 15307 5389585
首先创建一个data.table
,其中包含cut()
中的所有群组:
groups_cut <- data.table(Gruppen = levels(cut(mydata[, Abweichung],breaks=GRENZEN,dig.lab = 5)))
> groups_cut
Gruppen
1: (0,5000]
2: (5000,10000]
3: (10000,15000]
4: (15000,20001]
然后是第二个data.table
,您可以在其中计算变量Gruppen
的出现次数:
mydata <- mydata[ , Gruppen := cut(mydata[, Abweichung],breaks=GRENZEN,dig.lab = 5)][, .N, by = Gruppen]
Gruppen N
1: (0,5000] 5
2: (5000,10000] 2
3: (15000,20001] 1
现在您可以合并两个data.table
:
merge_dt<- mydata[groups_cut, on = "Gruppen"]
> merge_dt
Gruppen N
1: (0,5000] 5
2: (5000,10000] 2
3: (10000,15000] NA
4: (15000,20001] 1
如果您不想保留NA
值,可以在合并后添加一些语法:
merge_dt <- mydata[groups_cut, on = "Gruppen"][, N := replace(N, is.na(N), 0)]
> merge_dt
Gruppen N
1: (0,5000] 5
2: (5000,10000] 2
3: (10000,15000] 0
4: (15000,20001] 1
答案 1 :(得分:1)
我想我自己找到了答案: 所以继续我的初始职位:
setDT(mydata)[ , Gruppen := cut(mydata$Abweichung,breaks=GRENZEN,dig.lab = 5)]
> print(mydata)
Abweichung BW_Gesamt Gruppen
1: 236 1137747 (0,5000]
2: 2000 1149019 (0,5000]
3: 2000 1227972 (0,5000]
4: 2331 1346480 (0,5000]
5: 4000 2226810 (0,5000]
6: 5272 2874114 (5000,10000]
7: 8585 4418070 (5000,10000]
8: 15307 5389585 (15000,20000]
> class(mydata$Abweichung)
[1] "numeric"
> class(mydata$BW_Gesamt)
[1] "numeric"
library(dplyr)
mydata <- levels(mydata$Gruppen) %>% #get distinct levels of the Gruppen variable
data.frame(Gruppen = .) %>% # create a data frame
left_join(mydata %>% # join with
group_by(Gruppen) %>% # for each value that exists
summarise(Abweichung = n(), BW_Gesamt = sum(BW_Gesamt)), by = "Gruppen") %>% # get occurrence of Abweichung and sum of BW_Gesamt just for fun
mutate(Abweichung = coalesce(Abweichung, 0L)) %>% # replace NAs with 0s
mutate(BW_Gesamt = coalesce(as.integer(BW_Gesamt), 0L))
> class(mydata$Abweichung)
[1] "integer"
> class(mydata$BW_Gesamt)
[1] "integer"
> print(mydata)
Gruppen Abweichung BW_Gesamt
1 (0,5000] 5 7088028
2 (5000,10000] 2 7292184
3 (10000,15000] 0 0
4 (15000,20000] 1 5389585
变异Abweichung和变异BW_Gesamt有区别,因为我发现Abweichung将被更改为整数,而BW_Gesamt仍然是数字。
我不知道这种方法有多高效,我在这里找到了它: LINK 感谢AntoniosK
也许有人知道如何优化它。在我看来,它具有改变组的结果的优点。所以我可以显示BW_Gesamt的总和,同时显示Abweichung的出现次数。