This matplotlib tutorial显示了如何使用两个y轴(两个不同的比例)创建绘图:
import numpy as np
import matplotlib.pyplot as plt
def two_scales(ax1, time, data1, data2, c1, c2):
ax2 = ax1.twinx()
ax1.plot(time, data1, color=c1)
ax1.set_xlabel('time (s)')
ax1.set_ylabel('exp')
ax2.plot(time, data2, color=c2)
ax2.set_ylabel('sin')
return ax1, ax2
# Create some mock data
t = np.arange(0.01, 10.0, 0.01)
s1 = np.exp(t)
s2 = np.sin(2 * np.pi * t)
# Create axes
fig, ax = plt.subplots()
ax1, ax2 = two_scales(ax, t, s1, s2, 'r', 'b')
# Change color of each axis
def color_y_axis(ax, color):
"""Color your axes."""
for t in ax.get_yticklabels():
t.set_color(color)
return None
color_y_axis(ax1, 'r')
color_y_axis(ax2, 'b')
plt.show()
我的问题:你如何修改代码来创建两个这样的子图,只是水平对齐? 我会做类似
的事情fig, ax = plt.subplots(1,2,figsize=(15, 8))
plt.subplot(121)
###plot something here
plt.subplot(122)
###plot something here
但是,如何确保调用创建轴的fig, ax = plt.subplots()
不会与您调用的fig, ax = plt.subplots(1,2,figsize=(15, 8))
冲突以创建水平对齐的画布?
答案 0 :(得分:5)
您可以创建两个子图using FluentValidation;
using Ninject;
using System;
using System.Linq;
class Program
{
static void Main(string[] args)
{
// Set up the DI Container.
var kernel = new StandardKernel();
kernel.Bind<IValidator<Customer>>().To<CustomerValidator>().InSingletonScope();
var nInjectvalidationFactory = kernel.Get<NInjectValidatorFactory>();
var customer = kernel.Get<Customer>();
var customerValidator = nInjectvalidationFactory.GetValidator<Customer>();
var results = customerValidator.Validate(customer);
if (!results.IsValid)
results.Errors.ToList().ForEach(e =>
{
Console.WriteLine(e.ErrorMessage);
Console.WriteLine(e.ErrorCode);
Console.WriteLine(e.PropertyName);
Console.WriteLine(e.ResourceName);
Console.WriteLine(e.Severity);
}
);
Console.ReadLine();
}
}
并将fig, (ax1, ax2) = plt.subplots(1,2)
应用于每个子图。
two_scales
答案 1 :(得分:1)