我需要帮助,因为我似乎迷失在时区:)
我使用Spark 1.6.2
我有这样的时代:
+--------------+-------------------+-------------------+
|unix_timestamp|UTC |Europe/Helsinki |
+--------------+-------------------+-------------------+
|1491771599 |2017-04-09 20:59:59|2017-04-09 23:59:59|
|1491771600 |2017-04-09 21:00:00|2017-04-10 00:00:00|
|1491771601 |2017-04-09 21:00:01|2017-04-10 00:00:01|
+--------------+-------------------+-------------------+
Spark机器上的默认时区如下:
#timezone = DefaultTz:欧洲/布拉格,SparkUtilTz:欧洲/布拉格
的输出
logger.info("#timezone = DefaultTz: {}, SparkUtilTz: {}", TimeZone.getDefault.getID, org.apache.spark.sql.catalyst.util.DateTimeUtils.defaultTimeZone.getID)
我想计算在给定时区内按日期和小时分组的时间戳(现在是欧洲/赫尔辛基+ 3小时)。
我的期望:
+----------+---------+-----+
|date |hour |count|
+----------+---------+-----+
|2017-04-09|23 |1 |
|2017-04-10|0 |2 |
+----------+---------+-----+
代码(使用from_utc_timestamp
):
def getCountsPerTime(sqlContext: SQLContext, inputDF: DataFrame, timeZone: String, aggr: String): DataFrame = {
import sqlContext.implicits._
val onlyTime = inputDF.select(
from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), timeZone).alias("time")
)
val visitsPerTime =
if (aggr.equalsIgnoreCase("hourly")) {
onlyTime.groupBy(
date_format($"time", "yyyy-MM-dd").alias("date"),
date_format($"time", "H").cast(DataTypes.IntegerType).alias("hour"),
).count()
} else if (aggr.equalsIgnoreCase("daily")) {
onlyTime.groupBy(
date_format($"time", "yyyy-MM-dd").alias("date")
).count()
}
visitsPerTime.show(false)
visitsPerTime
}
我得到了什么:'(
+----------+---------+-----+
|date |hour |count|
+----------+---------+-----+
|2017-04-09|22 |1 |
|2017-04-09|23 |2 |
+----------+---------+-----+
尝试用to_utc_timestamp
包裹它:
def getCountsPerTime(sqlContext: SQLContext, inputDF: DataFrame, timeZone: String, aggr: String): DataFrame = {
import sqlContext.implicits._
val onlyTime = inputDF.select(
to_utc_timestamp(from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), timeZone), DateTimeUtils.defaultTimeZone.getID).alias("time")
)
val visitsPerTime = ... //same as above
visitsPerTime.show(false)
visitsPerTime
}
我得到了什么:(
+----------+---------+-----+
|tradedate |tradehour|count|
+----------+---------+-----+
|2017-04-09|20 |1 |
|2017-04-09|21 |2 |
+----------+---------+-----+
你知道正确的解决方案是什么吗?
提前感谢您的帮助
答案 0 :(得分:1)
你的代码对我不起作用,所以我无法复制你得到的最后两个输出。
但是我将为您提供一些关于如何实现预期输出的提示
我假设你已经dataframe
作为
+--------------+---------------------+---------------------+
|unix_timestamp|UTC |Europe/Helsinki |
+--------------+---------------------+---------------------+
|1491750899 |2017-04-09 20:59:59.0|2017-04-09 23:59:59.0|
|1491750900 |2017-04-09 21:00:00.0|2017-04-10 00:00:00.0|
|1491750901 |2017-04-09 21:00:01.0|2017-04-10 00:00:01.0|
+--------------+---------------------+---------------------+
我使用以下代码
获得此dataframe
import sqlContext.implicits._
import org.apache.spark.sql.functions._
val inputDF = Seq(
"2017-04-09 20:59:59",
"2017-04-09 21:00:00",
"2017-04-09 21:00:01"
).toDF("unix_timestamp")
val onlyTime = inputDF.select(
unix_timestamp($"unix_timestamp").alias("unix_timestamp"),
from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), "UTC").alias("UTC"),
from_utc_timestamp($"unix_timestamp".cast(DataTypes.TimestampType), "Europe/Helsinki").alias("Europe/Helsinki")
)
onlyTime.show(false)
一旦你有dataframe
,获得你想要的输出dataframe
就需要split
日期,groupby
和count
如下< / p>
onlyTime.select(split($"Europe/Helsinki", " ")(0).as("date"), split(split($"Europe/Helsinki", " ")(1).as("time"), ":")(0).as("hour"))
.groupBy("date", "hour").agg(count("date").as("count"))
.show(false)
结果dataframe
是
+----------+----+-----+
|date |hour|count|
+----------+----+-----+
|2017-04-09|23 |1 |
|2017-04-10|00 |2 |
+----------+----+-----+