R Shiny ggiraph和d3heatmap兼容性问题

时间:2017-06-22 19:39:26

标签: r shiny d3heatmap ggiraph

我正在尝试为我的Shiny应用添加交互式热图,但我也使用ggiraph进行交互式图表。我目前正在使用d3heatmap包,但热图不会在应用中呈现。我已经创建了一个玩具示例来说明这一点:

library(shiny)
library(ggiraph)
library(d3heatmap)

ui <- fluidPage(
    d3heatmapOutput('d3'),
    ggiraphOutput('gg')
)

server <- function(input, output, session) {

    # Create heatmap
    output$d3 <- renderD3heatmap({
        d3heatmap(matrix(1:100, nrow = 100, ncol = 100))
    })

    # Create ggiraph
    output$gg <- renderggiraph({
        p <- ggplot(iris, aes(x = Sepal.Length, y = Petal.Width,
                              color = Species, tooltip = iris$Species) ) +
             geom_point_interactive()

        ggiraph(code = {print(p)})
    })
}

shinyApp(ui =  ui, server = server)

在一起,只有ggiraph呈现,但热图不会。但是,如果您注释掉ggiraph代码,则热图会呈现。我尝试切换加载包的顺序,但仍然无法正常工作。

我目前在R 3.2.2上运行(我必须使用此版本,因为公司服务器只能在此版本上运行,我的经理和我都无权更新它)。我尝试下载了shinyheatmap,heatmaply和heatmap.2软件包,但由于版本问题,安装失败了。

现在,我刚刚使用pheatmap创建了热图,但它们并不是交互式的(即,当我将鼠标悬停在单个细胞上时,我无法获得值,而且我可以&# 39; t放大)。有没有解决方法,或者还有其他交互式热图包可以使用吗?我想避免将我的所有ggiraph图更改为图表图,因为我的代码中有很多这些图。

如果您还需要其他任何信息,请与我们联系。任何建议将不胜感激!

2 个答案:

答案 0 :(得分:3)

(只是为了让你知道我是ggiraph的作者) ggiraph和d3heatmap之间存在冲突,因为ggiraph使用 d3.js版本4 而d3heatmap使用 D3.js版本3 。我不认为有解决冲突的解决方案。

但是,使用ggplot2 / ggiraph构建交互式热图并不困难。见下文:

library(dplyr)
library(tidyr)
library(ggplot2)
library(ggiraph)
library(ggdendro)


# mydata <- cor(mtcars)
mydata <- matrix(runif(2500, min = -2, max = 2), ncol = 50)
row.names(mydata) <- paste0("row_", seq_len(nrow(mydata)))
colnames(mydata) <- paste0("col_", seq_len(ncol(mydata)))

# dendrogram for rows
hc <- hclust(dist(mydata), "ave")
dhr <- as.dendrogram(hc)
order_r <- rownames(mydata)[hc$order]

# dendrogram for columns
hc <- hclust(dist(t(mydata)), "ave")
dhc <- as.dendrogram(hc)
order_c <- colnames(mydata)[hc$order]

# the data
expr_set <- bind_cols(
  data_frame(rowvar = rownames(mydata)),
  as.data.frame(mydata)
)
expr_set <- gather(expr_set, colvar, measure, -rowvar)
expr_set$rowvar <- factor( expr_set$rowvar, levels = order_r )
expr_set$colvar <- factor( expr_set$colvar, levels = order_c )
expr_set <- arrange(expr_set, rowvar, colvar)

# get data for dendrograms - IMHO, ggdendro is the hero here...
data_c <- dendro_data(dhc, type = "rectangle")
data_c <- segment(data_c) %>% mutate(
  y = y + length(order_r) + .5,
  yend = yend + length(order_r) + .5
)

data_r <- dendro_data(dhr, type = "rectangle")
data_r <- segment(data_r)
data_r <- data_r %>%
  mutate( x_ = y + length(order_c) + .5,
          xend_ = yend + length(order_c) + .5,
          y_ = x,
          yend_ = xend )

expr_set <- expr_set %>% 
  mutate( 
    tooltip = sprintf("Row: %s<br/>Col: %s<br/>measure: %.02f", 
                      rowvar, colvar, measure) ,
    data_id = sprintf("%s_%s", rowvar, colvar)
    )


# all data are tidy and can be now used with ggplot
p <- ggplot(data = expr_set, aes(x = colvar, y = rowvar) ) +
  geom_tile_interactive(aes(fill = measure, tooltip = tooltip, data_id = data_id), colour = "white") +
  scale_fill_gradient(low = "white", high = "#BC120A") +
  geom_segment(
    data = data_c,
    mapping = aes(x = x, y = yend, xend = xend, yend = y),
    colour = "gray20", size = .2) +
  geom_segment(
    data = data_r,
    mapping = aes(x = x_, y = y_, xend = xend_, yend = yend_),
    colour = "gray20", size = .2) +
  coord_equal()

# cosmetics
p <- p + theme_minimal() +
  theme(
    legend.position = "right",
    panel.grid.minor = element_line(color = "transparent"),
    panel.grid.major = element_line(color = "transparent"),
    axis.ticks.length   = unit(2, units = "mm"),
    plot.title = element_text(face = "bold", hjust = 0.5, size = 12),
    axis.title = element_text(size = 9, colour = "gray30"),
    axis.text.y = element_text(hjust = 1, size = 5, colour = "gray40"),
    axis.text.x = element_text(angle = 90, hjust = 1, size = 5, colour = "gray40"),
    legend.title=element_text(face = "bold", hjust = 0.5, size=8),
    legend.text=element_text(size=6)
  )



ggiraph(ggobj = p)

enter image description here

希望有所帮助

答案 1 :(得分:1)

我知道这个问题已在不久前得到解答,但我遇到了同样的问题,因此我无法使用ggplot2,因为使用我的Shiny应用程序太慢了。 heatmaply软件包可以更快,更容易实现。我执行了一个迷你基准测试(n = 20)。 ggplot2的平均时间为64秒。使用heatmaply只需2秒。两种方法都使用'ave'的{​​{1}}方法。希望对您有所帮助。


mini-benchmark n= 20 of ggplot vs heatmaply

这是我使用的代码:

hclust