我需要随着时间的推移获得损失历史记录,以图形方式绘制它。 这是我的代码框架:
optimizer = tf.contrib.opt.ScipyOptimizerInterface(loss, method='L-BFGS-B',
options={'maxiter': args.max_iterations, 'disp': print_iterations})
optimizer.minimize(sess, loss_callback=append_loss_history)
使用append_loss_history
定义:
def append_loss_history(**kwargs):
global step
if step % 50 == 0:
loss_history.append(loss.eval())
step += 1
当我看到ScipyOptimizerInterface
的详细输出时,损失实际上随着时间的推移而减少。
但是当我打印loss_history
时,随着时间的推移损失几乎相同。
参考文档: "受优化影响的变量在优化结束时就地更新" https://www.tensorflow.org/api_docs/python/tf/contrib/opt/ScipyOptimizerInterface。这是损失不变的原因吗?
答案 0 :(得分:3)
我认为你有问题;变量本身在优化结束之前不会被修改(而是being fed to session.run calls),并评估"反向通道" Tensor获取未修改的变量。相反,使用fetches
optimizer.minimize
参数来搭载指定了Feed的session.run
个调用:
import tensorflow as tf
def print_loss(loss_evaled, vector_evaled):
print(loss_evaled, vector_evaled)
vector = tf.Variable([7., 7.], 'vector')
loss = tf.reduce_sum(tf.square(vector))
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss, method='L-BFGS-B',
options={'maxiter': 100})
with tf.Session() as session:
tf.global_variables_initializer().run()
optimizer.minimize(session,
loss_callback=print_loss,
fetches=[loss, vector])
print(vector.eval())
(从example in the documentation修改)。这将使用更新的值打印Tensors:
98.0 [ 7. 7.]
79.201 [ 6.29289341 6.29289341]
7.14396e-12 [ -1.88996808e-06 -1.88996808e-06]
[ -1.88996808e-06 -1.88996808e-06]