考虑以下示例
dataframe_test<- data_frame(mydate = c('2011-03-01T00:00:04.226Z', '2011-03-01T00:00:04.226Z'))
# A tibble: 2 x 1
mydate
<chr>
1 2011-03-01T00:00:04.226Z
2 2011-03-01T00:00:04.226Z
sdf <- copy_to(sc, dataframe_test, overwrite = TRUE)
> sdf
# Source: table<dataframe_test> [?? x 1]
# Database: spark_connection
mydate
<chr>
1 2011-03-01T00:00:04.226Z
2 2011-03-01T00:00:04.226Z
我想修改字符timestamp
,使其具有更传统的格式。我尝试使用regexp_replace
这样做,但它失败了。
> sdf <- sdf %>% mutate(regex = regexp_replace(mydate, '(\\d{4})-(\\d{2})-(\\d{2})T(\\d{2}):(\\d{2}):(\\d{2}).(\\d{3})Z', '$1-$2-$3 $4:$5:$6.$7'))
> sdf
# Source: lazy query [?? x 2]
# Database: spark_connection
mydate regex
<chr> <chr>
1 2011-03-01T00:00:04.226Z 2011-03-01T00:00:04.226Z
2 2011-03-01T00:00:04.226Z 2011-03-01T00:00:04.226Z
有什么想法吗?什么是正确的语法?
答案 0 :(得分:6)
Spark SQL和Hive提供两种不同的功能:
regexp_extract
- 它采用字符串,模式和要提取的组的索引。regexp_replace
- 带有字符串,模式和替换字符串。前者可用于提取带有索引语义being the same的单个组,而不是java.util.regex.Matcher
对于regexp_replace
模式必须匹配整个字符串,如果没有匹配,则返回输入字符串:
sdf %>% mutate(
regex = regexp_replace(mydate, '^([0-9]{4}).*', "$1"),
regexp_bad = regexp_replace(mydate, '([0-9]{4})', "$1"))
## Source: query [2 x 3]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
##
## # A tibble: 2 x 3
## mydate regex regexp_bad
## <chr> <chr> <chr>
## 1 2011-03-01T00:00:04.226Z 2011 2011-03-01T00:00:04.226Z
## 2 2011-03-01T00:00:04.226Z 2011 2011-03-01T00:00:04.226Z
与regexp_extract
同时不需要:
sdf %>% mutate(regex = regexp_extract(mydate, '([0-9]{4})', 1))
## Source: query [2 x 2]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
##
## # A tibble: 2 x 2
## mydate regex
## <chr> <chr>
## 1 2011-03-01T00:00:04.226Z 2011
## 2 2011-03-01T00:00:04.226Z 2011
此外,由于间接执行(R - > Java),您必须转义两次:
sdf %>% mutate(
regex = regexp_replace(
mydate,
'^(\\\\d{4})-(\\\\d{2})-(\\\\d{2})T(\\\\d{2}):(\\\\d{2}):(\\\\d{2}).(\\\\d{3})Z$',
'$1-$2-$3 $4:$5:$6.$7'))
通常会使用Spark日期时间函数:
spark_session(sc) %>%
invoke("sql",
"SELECT *, DATE_FORMAT(CAST(mydate AS timestamp), 'yyyy-MM-dd HH:mm:ss.SSS') parsed from dataframe_test") %>%
sdf_register
## Source: query [2 x 2]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
##
## # A tibble: 2 x 2
## mydate parsed
## <chr> <chr>
## 1 2011-03-01T00:00:04.226Z 2011-03-01 01:00:04.226
## 2 2011-03-01T00:00:04.226Z 2011-03-01 01:00:04.226
但遗憾的是sparklyr
似乎在这方面非常有限,并将时间戳视为字符串。
另见change string in DF using hive command and mutate with sparklyr。