TensorFlow - 从TF记录中解码给定形状的图像

时间:2017-06-17 23:12:00

标签: tensorflow deep-learning

我正在尝试从TFrecords文件中读取图像。图像的形状各不相同。阅读后,我想保留它们的形状,这就是我适当地传递高度,宽度和深度参数的原因。但是代码只是在set_shape命令之后才打印出来。我在main函数中初始化了会话。有没有办法获得高度,w,d张量的值,以便我可以将它传递给set_shape?我该如何解决?欢迎任何建议。提前谢谢。

SELECT * FROM table_1 ORDER BY date DESC LIMIT 10

这是我的主要职能:

def read_and_decode(sess,filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
          'height': tf.FixedLenFeature([], tf.int64),
          'width': tf.FixedLenFeature([], tf.int64),
          'depth': tf.FixedLenFeature([], tf.int64),
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label': tf.FixedLenFeature([], tf.int64),
      })

  # Convert from a scalar string tensor (whose single string has
  # length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
  # [mnist.IMAGE_PIXELS].
  image = tf.decode_raw(features['image_raw'], tf.uint8)
  image.set_shape([sess.run(features['height']),sess.run(features['width']),sess.run(features['depth'])])

和load_input()函数调用read_and_decode()。

def main(argv=None):
   with tf.Graph().as_default():
      sess=tf.Session()
      pdb.set_trace()
      load_inputs(sess,FLAGS.batch_size)

0 个答案:

没有答案