假设我有两个数据帧。
DF1: col1,col2,col3,
DF2:col2,col4,col5
如何水平连接两个数据帧并使用col1,col2,col3,col4和col5?现在,我正在做pd.concat([DF1,DF2],轴= 1),但它最终有两个col2。假设两个col2中的所有值都相同,我想只有一列。
答案 0 :(得分:5)
删除重复项应该有效。因为drop_duplicates仅适用于索引,我们需要转置DF以删除重复项并将其转置回来。
<key>WatchPaths</key>
<array>
<string>/Library/Preferences/SystemConfiguration/com.apple.airport.preferences.plist</string>
</array>
答案 1 :(得分:4)
使用DF2
来自DF1
的{{1}}中不在[]
的列,并按DF1 = pd.DataFrame(columns=['col1', 'col2', 'col3'])
DF2 = pd.DataFrame(columns=['col2', 'col4', 'col5'])
DF2 = DF2[DF2.columns.difference(DF1.columns)]
print (DF2)
Empty DataFrame
Columns: [col4, col5]
Index: []
print (pd.concat([DF1, DF2], axis = 1))
Empty DataFrame
Columns: [col1, col2, col3, col4, col5]
Index: []
进行简单选择:
np.random.seed(123)
N = 1000
DF1 = pd.DataFrame(np.random.rand(N,3), columns=['col1', 'col2', 'col3'])
DF2 = pd.DataFrame(np.random.rand(N,3), columns=['col2', 'col4', 'col5'])
DF2['col2'] = DF1['col2']
In [408]: %timeit (pd.concat([DF1, DF2], axis = 1).T.drop_duplicates().T)
10 loops, best of 3: 122 ms per loop
In [409]: %timeit (pd.concat([DF1, DF2[DF2.columns.difference(DF1.columns)]], axis = 1))
1000 loops, best of 3: 979 µs per loop
<强>计时强>:
N = 10000:
In [411]: %timeit (pd.concat([DF1, DF2], axis = 1).T.drop_duplicates().T)
1 loop, best of 3: 1.4 s per loop
In [412]: %timeit (pd.concat([DF1, DF2[DF2.columns.difference(DF1.columns)]], axis = 1))
1000 loops, best of 3: 1.12 ms per loop
{{1}}
答案 2 :(得分:0)
def doSomeComputation(m1: Map[String, List[(String, Double)]], name: String) = {
(Map("some_key" -> List(("tuple1",1.0))), "tuple2")
}
然后,
DF2.drop(DF2.columns[DF2.columns.isin(DF1.columns)],axis=1,inplace=True)