我正在为我的学校项目编写一个连接四个AI。但首先,我要在编写minimax算法之前模拟6(行)* 7(列)上的每个可能的移动,以便为每个阶段的板完成最佳移动。 而不是使用
for a in range(7):
place_player_disk()
complete_set.append
if check_win():
continue
for b in legal_move():
place_AI_disk()
complete_set.append
if check_win()
continue
.... #repeat the nested for loop 42 times
我想用更简洁的方式来做这件事
state0=[['','','','','','',''],['','','','','','',''],['','','','','','',''],['','','','','','',''],['','','','','','',''],['','','','','','',''],['','','','','','','']]
complete_set=[[],[],[],[],[],[]...]
import copy
def playerplacetoken(perimeter,location):
count=0
for row in range(6):
if perimeter[row][location]=='X' or perimeter[row][location]=='Y':
count+=1
perimeter[5-count][location]='X'
def full(perimeter):
free = []
for column in range(7):
if perimeter[0][column] == '':
free.append(column)
return free
def PlacingCPUToken(perimeter,location):
count=0
for row in range (6):
if perimeter[row][location]=='X' or perimeter[row][location]=='Y':
count+=1
perimeter[5-count][location]='Y'
def CheckP(perimeter):
changerow=[0,1,1]
changecolumn=[1,0,1]
Pwin=False
for col in range(7):
for row in range (6):
for change in range (3):
try:
consecutivecount=0
for nochange in range(4):
if perimeter[row+(changerow[change]*(nochange))] [col+(changecolumn[change]*(nochange))]=='X':
consecutivecount+=1
if consecutivecount==4:
Pwin=True
except:
continue
return Pwin
def CheckC(perimeter):
changerow=[0,1,1]
changecolumn=[1,0,1]
Cwin=False
for col in range(7):
for row in range (6):
for change in range (3):
try:
consecutivecount=0
for nochange in range(4):
if perimeter[row+(changerow[change]*(nochange))][col+(changecolumn[change]*(nochange))]=='Y':
consecutivecount+=1
if consecutivecount==4:
Cwin=True
except:
continue
return Cwin
def recursive(state,move): #state: the state of board, first starts with an empty board and as the function loops, the state changes Move: no of moves taken by both the player and the computer
for a in full(state): #full returns a list of legal moves, which means columns that are not full
state1= copy.deepcopy(state)
playerplacetoken(state1, a)
complete_set[move].append(state1)
if CheckP(state1): #Check p returns boolean, checking if the player has won
continue
for b in full(state1):
state2= copy.deepcopy(state1)
PlacingCPUToken(state2, b)
complete_set[move+1].append(state2)
if CheckC(state2): #Check C checks if the computer wins and return a boolean
continue
while move<44:
move+=2
recursive(state2,move)
recursive(state0,0)
但这不能正常工作(我的意思是它没有错误,但结果不正确) 我真的不知道如何使用递归函数。请帮忙!
答案 0 :(得分:0)
complete_set
。return
步骤recursive
中的任何内容。正因为如此,在嵌套步骤中计算出的信息无法进入调用步骤。
更新:状态确实是通过递归步骤更新的:complete_set[...].append(...)
这样做,因为complete_set
是全局的。
尝试考虑您尝试编写的函数的类型。
E.g。它需要一个状态和一个整数深度级别。它返回一个可能的移动列表,如果深度太大,则为空。
您可能真正想要的是移动的树,其中列表的每个元素都是一对:(move, [...])
。该列表包含相同类型的对:具有可移动子树的移动,等等。叶子有一组空的可能移动。
您可能会考虑在构建节点时正确计算即时效用函数值。
如果你使计算变得懒惰(使用yield
和生成器),alpha-beta修剪也将变得易于实现。