val file = File.createTempFile("temp", ".avro")
val schema = new Schema.Parser().parse(st)
val datumWriter = new GenericDatumWriter[GenericData.Record](schema)
val dataFileWriter = new DataFileWriter[GenericData.Record](datumWriter)
dataFileWriter.create(schema , file)
rdd.foreach(r => {
dataFileWriter.append(r)
})
dataFileWriter.close()
我有一个DStream
类型GenericData.Record
,我试图以Avro格式写入HDFS但我收到此Task Not Serializable
错误:
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2062)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:911)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:910)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.foreach(RDD.scala:910)
at KafkaCo$$anonfun$main$3.apply(KafkaCo.scala:217)
at KafkaCo$$anonfun$main$3.apply(KafkaCo.scala:210)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.NotSerializableException: org.apache.avro.file.DataFileWriter
Serialization stack:
- object not serializable (class: org.apache.avro.file.DataFileWriter, value: org.apache.avro.file.DataFileWriter@78f132d9)
- field (class: KafkaCo$$anonfun$main$3$$anonfun$apply$1, name: dataFileWriter$1, type: class org.apache.avro.file.DataFileWriter)
- object (class KafkaCo$$anonfun$main$3$$anonfun$apply$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)
答案 0 :(得分:2)
这里的关键点是DataFileWriter
是本地资源(绑定到本地文件),因此序列化它没有意义。
调整代码以执行mapPartitions
之类的操作也无济于事,因为这样的执行器绑定方法会在执行程序的本地文件系统上写入文件。
我们需要使用支持Spark的分布式特性的实现,例如https://github.com/databricks/spark-avro
使用该库:
鉴于case class
代表的某些架构,我们会这样做:
val structuredRDD = rdd.map(record => recordToSchema(record))
val df = structuredRDD.toDF()
df.write.avro(hdfs_path)
答案 1 :(得分:1)
由于lambdas必须分布在集群周围才能运行,因此它们必须只引用可序列化的数据,以便它们可以被序列化,运送到不同的执行器进行部署,并作为任务执行。
你可能做的是:
[(2/10)*(10) + (5/5)*(10) + (2/20)*(5)] / 9 = 1.3889
(而不是mapPartitions
)方法为每个分区创建一个新的编写器