Python:使用基于嵌套列表中的唯一值的列创建pandas数据帧

时间:2017-06-13 03:10:19

标签: python pandas numpy

我有一个包含每个样本的不同区域的嵌套列表。我想创建一个数据帧,使每行(样本)都存在或不存在相应的区域(列)。例如,数据可能如下所示:

region_list = [['North America'], ['North America', 'South America'], ['Asia'], ['North America', 'Asia', 'Australia']]

结束数据框看起来像这样:

North America    South America     Asia     Australia
1                0                 0        0
1                1                 0        0
0                0                 1        0
1                0                 1        1

我想我可能想出一种使用嵌套循环并附加的方法,但是有更多的pythonic方法吗?也许是numpy.where

4 个答案:

答案 0 :(得分:6)

<强> pandas
str.get_dummies

pd.Series(region_list).str.join('|').str.get_dummies()

   Asia  Australia  North America  South America
0     0          0              1              0
1     0          0              1              1
2     1          0              0              0
3     1          1              1              0

<强> numpy
np.bincountpd.factorize

n = len(region_list)
i = np.arange(n).repeat([len(x) for x in region_list])
f, u = pd.factorize(np.concatenate(region_list))
m = u.size

pd.DataFrame(
    np.bincount(i * m + f, minlength=n * m).reshape(n, m),
    columns=u
)

   North America  South America  Asia  Australia
0              1              0     0          0
1              1              1     0          0
2              0              0     1          0
3              1              0     1          1

计时

%timeit pd.Series(region_list).str.join('|').str.get_dummies()
1000 loops, best of 3: 1.42 ms per loop

%%timeit
n = len(region_list)
i = np.arange(n).repeat([len(x) for x in region_list])
f, u = pd.factorize(np.concatenate(region_list))
m = u.size

pd.DataFrame(
    np.bincount(i * m + f, minlength=n * m).reshape(n, m),
    columns=u
)
1000 loops, best of 3: 204 µs per loop

答案 1 :(得分:4)

让我们试试:

df = pd.DataFrame(region_list)

df2 = df.stack().reset_index(name='region')

df_out = pd.get_dummies(df2.set_index('level_0')['region']).groupby(level=0).sum().rename_axis(None)

print(df_out)

输出:

         Asia  Australia  North America  South America                                               
0           0          0              1              0
1           0          0              1              1
2           1          0              0              0
3           1          1              1              0

答案 2 :(得分:1)

这将完成这项工作!

unsigned int index(struct myDataStructure, void *value, bool *ok);

答案 3 :(得分:1)

您可以使用www模块中的chain.from_iterableitertools

list comprehension

输出:

from itertools import chain

region_list = [['North America'], ['North America', 'South America'], ['Asia'], ['North America', 'Asia', 'Australia']]

regions = list(set(chain.from_iterable(region_list)))
vals = [[1 if j in k else 0 for j in regions] for k in region_list]
df = pd.DataFrame(vals, columns=regions)
print(df)