tensorflow,怎么做mfist中的tf.Print为ml初学者

时间:2017-06-09 08:07:55

标签: tensorflow mnist

我正在尝试使用此page上的tensorflow的入门示例。我想打印关于交叉熵但却一无所获。 这是代码,它也可以从here引用。

.delete()

我无法找出为什么from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import numpy as np mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)) cross_entropy = tf.Print(cross_entropy, [cross_entropy], "###") train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) 绑定到交叉熵,在每个循环中什么都不打印。

我想我已经绑定了tf.Print - > cross_entropy - > train_step并运行此train_step。我的问题是什么?

1 个答案:

答案 0 :(得分:0)

你是对的,tf.Print是(引用文档):

  

一种身份认证操作,具有在评估时打印数据的副作用。

因此,正确地说,每当某个东西流过cross_entropy节点时,您都​​希望看到cross_entropy的值。

问题是你要最小化真实的交叉熵而不是身份节点。因此,在实践中,cross_entropy变量是一个标识节点,它指向"到另一个有效评估的变量。

要解决此问题,您可以强制在图表中评估节点的顺序。

您可以在记录值后限制正在执行的最小化步骤。为此,您可以这样使用tf.control_dependencies

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

y = tf.matmul(x, W) + b
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))

with tf.control_dependencies([tf.Print(cross_entropy, [cross_entropy], "###")]):
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(
    sess.run(accuracy, feed_dict={x: mnist.test.images,
                                  y_: mnist.test.labels}))