我正在尝试使用此page上的tensorflow的入门示例。我想打印关于交叉熵但却一无所获。 这是代码,它也可以从here引用。
.delete()
我无法找出为什么from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
cross_entropy = tf.Print(cross_entropy, [cross_entropy], "###")
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
绑定到交叉熵,在每个循环中什么都不打印。
我想我已经绑定了tf.Print - > cross_entropy - > train_step并运行此train_step。我的问题是什么?
答案 0 :(得分:0)
你是对的,tf.Print
是(引用文档):
一种身份认证操作,具有在评估时打印数据的副作用。
因此,正确地说,每当某个东西流过cross_entropy
节点时,您都希望看到cross_entropy
的值。
问题是你要最小化真实的交叉熵而不是身份节点。因此,在实践中,cross_entropy
变量是一个标识节点,它指向"到另一个有效评估的变量。
要解决此问题,您可以强制在图表中评估节点的顺序。
您可以在记录值后限制正在执行的最小化步骤。为此,您可以这样使用tf.control_dependencies
:
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
with tf.control_dependencies([tf.Print(cross_entropy, [cross_entropy], "###")]):
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(
sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels}))