计算具有间隔的每行的平均值

时间:2017-06-08 11:31:49

标签: r cut

我需要计算每一行的平均值(间隔的平均值)。这是一个基本的例子(也许任何人都有更好的想法):

M_1_mb <-  (15 : -15)#creating a vector value --> small
M_31 <-  cut(M_31_mb,128)# getting 128 groups from the small vector   
#M_1_mb <-  (1500 : -1500)#creating a vector value 
#M_1 <-  cut(M_1_mb,128)# getting 128 groups from the vector 

我确实需要在M_1中创建的128个区间中获得每个行/组的平均值(实际上我甚至不需要那些区间,我只需要它们的平均值)并且我无法弄清楚怎么做......

我查看了cut2库中的Hmisc函数,但不幸的是没有选项来设置要剪切矢量的间隔数( - &gt;但是有一个选项获取创建的间隔的平均值:levels.mean ...)

我将不胜感激任何帮助!谢谢!

其他信息:

cut2函数适用于较大的向量(M_1_mb),但是当我的向量很小(M_31_mb)时,我收到一条警告消息:

Warning message:
In min(xx[xx > upper]) : no non-missing arguments to min; returning Inf

并且只创建了31个组:

M_31_mb <-  (15 : -15) # smaller vector 
M_31 <-  table(cut2(M_31_mb,g=128,levels.mean = TRUE))

  

g =分位数组的数量

1 个答案:

答案 0 :(得分:1)

像这样?

aggregate(M_1_mb,by=list(M_1),mean)

编辑:结果

                   Group.1       x
1    (-1.5e+03,-1.48e+03] -1488.5
2   (-1.48e+03,-1.45e+03] -1465.0
3   (-1.45e+03,-1.43e+03] -1441.5
4   (-1.43e+03,-1.41e+03] -1418.0
5   (-1.41e+03,-1.38e+03] -1394.5
6   (-1.38e+03,-1.36e+03] -1371.0
7   (-1.36e+03,-1.34e+03] -1347.5
8   (-1.34e+03,-1.31e+03] -1324.0
9   (-1.31e+03,-1.29e+03] -1301.0
10  (-1.29e+03,-1.27e+03] -1277.5
11  (-1.27e+03,-1.24e+03] -1254.0
12  (-1.24e+03,-1.22e+03] -1230.5
13   (-1.22e+03,-1.2e+03] -1207.0
14   (-1.2e+03,-1.17e+03] -1183.5
15  (-1.17e+03,-1.15e+03] -1160.0
16  (-1.15e+03,-1.12e+03] -1136.5
17   (-1.12e+03,-1.1e+03] -1113.0
18   (-1.1e+03,-1.08e+03] -1090.0
19  (-1.08e+03,-1.05e+03] -1066.5
20  (-1.05e+03,-1.03e+03] -1043.0
21  (-1.03e+03,-1.01e+03] -1019.5
22       (-1.01e+03,-984]  -996.0
23            (-984,-961]  -972.5
24            (-961,-938]  -949.0
25            (-938,-914]  -926.0
26            (-914,-891]  -902.5
27            (-891,-867]  -879.0
28            (-867,-844]  -855.5
29            (-844,-820]  -832.0
30            (-820,-797]  -808.5
31            (-797,-773]  -785.0
32            (-773,-750]  -761.5
33            (-750,-727]  -738.0
34            (-727,-703]  -715.0
35            (-703,-680]  -691.5
36            (-680,-656]  -668.0
37            (-656,-633]  -644.5
38            (-633,-609]  -621.0
39            (-609,-586]  -597.5
40            (-586,-562]  -574.0
41            (-562,-539]  -551.0
42            (-539,-516]  -527.5
43            (-516,-492]  -504.0
44            (-492,-469]  -480.5
45            (-469,-445]  -457.0
46            (-445,-422]  -433.5
47            (-422,-398]  -410.0
48            (-398,-375]  -386.5
49            (-375,-352]  -363.0
50            (-352,-328]  -340.0
51            (-328,-305]  -316.5
52            (-305,-281]  -293.0
53            (-281,-258]  -269.5
54            (-258,-234]  -246.0
55            (-234,-211]  -222.5
56            (-211,-188]  -199.0
57            (-188,-164]  -176.0
58            (-164,-141]  -152.5
59            (-141,-117]  -129.0
60           (-117,-93.8]  -105.5
61          (-93.8,-70.3]   -82.0
62          (-70.3,-46.9]   -58.5
63          (-46.9,-23.4]   -35.0
64              (-23.4,0]   -11.5
65               (0,23.4]    12.0
66            (23.4,46.9]    35.0
67            (46.9,70.3]    58.5
68            (70.3,93.8]    82.0
69             (93.8,117]   105.5
70              (117,141]   129.0
71              (141,164]   152.5
72              (164,188]   176.0
73              (188,211]   199.0
74              (211,234]   222.5
75              (234,258]   246.0
76              (258,281]   269.5
77              (281,305]   293.0
78              (305,328]   316.5
79              (328,352]   340.0
80              (352,375]   363.5
81              (375,398]   387.0
82              (398,422]   410.0
83              (422,445]   433.5
84              (445,469]   457.0
85              (469,492]   480.5
86              (492,516]   504.0
87              (516,539]   527.5
88              (539,562]   551.0
89              (562,586]   574.0
90              (586,609]   597.5
91              (609,633]   621.0
92              (633,656]   644.5
93              (656,680]   668.0
94              (680,703]   691.5
95              (703,727]   715.0
96              (727,750]   738.5
97              (750,773]   762.0
98              (773,797]   785.0
99              (797,820]   808.5
100             (820,844]   832.0
101             (844,867]   855.5
102             (867,891]   879.0
103             (891,914]   902.5
104             (914,938]   926.0
105             (938,961]   949.0
106             (961,984]   972.5
107        (984,1.01e+03]   996.0
108   (1.01e+03,1.03e+03]  1019.5
109   (1.03e+03,1.05e+03]  1043.0
110   (1.05e+03,1.08e+03]  1066.5
111    (1.08e+03,1.1e+03]  1090.0
112    (1.1e+03,1.12e+03]  1113.5
113   (1.12e+03,1.15e+03]  1137.0
114   (1.15e+03,1.17e+03]  1160.0
115    (1.17e+03,1.2e+03]  1183.5
116    (1.2e+03,1.22e+03]  1207.0
117   (1.22e+03,1.24e+03]  1230.5
118   (1.24e+03,1.27e+03]  1254.0
119   (1.27e+03,1.29e+03]  1277.5
120   (1.29e+03,1.31e+03]  1301.0
121   (1.31e+03,1.34e+03]  1324.0
122   (1.34e+03,1.36e+03]  1347.5
123   (1.36e+03,1.38e+03]  1371.0
124   (1.38e+03,1.41e+03]  1394.5
125   (1.41e+03,1.43e+03]  1418.0
126   (1.43e+03,1.45e+03]  1441.5
127   (1.45e+03,1.48e+03]  1465.0
128    (1.48e+03,1.5e+03]  1488.5