请帮助我理解如何从图的邻接矩阵中获取最小的生成树! 我在java写了关于它的课程,截止日期是16.12.2010,但我觉得它会失败。 现在我的程序可以:
但我不知道如何在Java中实现Prim / Kruskal algorhythm。我试着找到一些结果 在谷歌,但只找到需要工作.obj文件的Java-applet,我也无法运行它。
我编写了一些简单的控制台java pattern,它现在生成并打印图形的邻接矩阵。任何人都可以添加返回图的最小生成树的邻接矩阵的函数:
public static int[][] mst(int[][] graph, int n) {
...
}
其中:
提前致谢!
答案 0 :(得分:1)
鉴于你的程序目前无法处理不相交集数据结构,你可能想要使用Prim。
看到你已经完成了做Prim所需的大部分工作,我会用伪代码给你。
int bestDist[N]
int mst[N][N]
int cameHere[N]
bool done[N]
FOR i = 0..N-1:
bestDist[i] = INFINITY
done[i] = false
FOR j=0..N-1:
mst[i][j] = INFINITY
// start at any node
bestDist[0] = 0;
FOR i = 0..N-1:
bestNode = INFINITY
bestNodeDist = INFINITY
IF bestNode != 0:
mst[cameHere[bestNode]][bestNode] = graph[cameHere[bestNode]][bestNode]
// find closest node
FOR j= 0..N-1:
IF !done[j] AND bestDist[j] < bestNodeDist:
bestNode = j
bestNodeDist = bestNodeDist[j]
// update surrounding nodes
FOR j=0..N-1:
IF !done[j] AND bestNodeDist + graph[bestNode][j] < bestDist[j]:
bestDist[j] = bestNodeDist + graph[bestNode][j]
cameHere[j] = bestNode
return mst
这在O(N ^ 2)中运行但您可以在O(E log E)中运行,如果您使用堆,则E = num edge。
答案 1 :(得分:1)
如果有人正在寻找具有邻接矩阵实现的MST,那么我的示例代码是用Java编写的。我发布它是因为Junkbot的答案缺乏一些细节。它以O(n ^ 2)运行,因此Prim算法是查找MST的密集/完整图的最佳选择。
public void MST-Prim()
{
int[] source = new int[numberOfVertices]; // i-th element contains number of source vertex for the edge with the lowest cost from tree T to vertex i
double[] dist = new double[numberOfVertices]; //i-th element contains weight of minimal edge connecting i with source[i]
indicators = new boolean[numberOfVertices]; //if true, vertex i is in tree T
// Mark all vertices as NOT being in the minimum spanning tree
for (int i = 0; i < numberOfVertices; i++)
{
indicators[i] = false;
dist[i] = Double.POSITIVE_INFINITY;
}
//we start with vertex number 0
indicators[0] = true;
dist[0] = 0;
int bestNeighbour = 0;// lastly added vertex to the tree T
double minDist;
for (int i = 0; i < numberOfVertices - 1; i++)
{
minDist = Double.POSITIVE_INFINITY;
for (int j = 0; j < numberOfVertices; j++) // fill dist[] based on distance to bestNeighbour vertex
{
if (!indicators[j])
{
double weight = fullGraph.getEdgeWeight(bestNeighbour, j);
if (weight < dist[j])
{
source[j] = bestNeighbour;
dist[j] = weight;
}
}
}
for (int j = 0; j < numberOfVertices; j++) // find index of min in dist[]
{
if (!indicators[j])
{
if (dist[j] < minDist)
{
bestNeighbour = j;
minDist = dist[j];
}
}
}
if (bestNeighbour != 0)
{//add the edge (bestNeighbour, dist[bestNeighbour]) to tree T
addEdgeToTree(new GraphEdge(fullGraph.getNode(source[bestNeighbour]), fullGraph.getNode(bestNeighbour),
dist[bestNeighbour]));
indicators[bestNeighbour] = true;
}
}
}