我正在使用Python的Fieldnames
来读取CSV文件中的值,以创建一个字典,其中键是CSV中的第一行或标题,其他行是值。它按预期完美地工作,我能够获得一个字典,但我只希望某些键在字典中而不是所有列值。做这个的最好方式是什么?我尝试使用csv.reader
但我不认为它具有此功能。也许这可以用熊猫来实现?
以下是我在CSV模块中使用的代码,其中import csv
with open(target_path+target_file) as csvfile:
reader = csv.DictReader(csvfile,fieldnames=Fieldnames)
for i in reader:
print i
是我想要保留在我的dict中的键。我意识到它不适用于我上面描述的内容。
{{1}}
答案 0 :(得分:2)
您可以使用pandas非常简单地完成此操作。
import pandas as pd
# get only the columns you want from the csv file
df = pd.read_csv(target_path + target_file, usecols=['Column Name1', 'Column Name2'])
result = df.to_dict(orient='records')
来源:
答案 1 :(得分:1)
您可以使用to_dict
方法获取dicts列表:
import pandas as pd
df = pd.read_csv(target_path+target_file, names=Fieldnames)
records = df.to_dict(orient='records')
for row in records:
print row
to_dict
文档:
In [67]: df.to_dict?
Signature: df.to_dict(orient='dict')
Docstring:
Convert DataFrame to dictionary.
Parameters
----------
orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
Determines the type of the values of the dictionary.
- dict (default) : dict like {column -> {index -> value}}
- list : dict like {column -> [values]}
- series : dict like {column -> Series(values)}
- split : dict like
{index -> [index], columns -> [columns], data -> [values]}
- records : list like
[{column -> value}, ... , {column -> value}]
- index : dict like {index -> {column -> value}}
.. versionadded:: 0.17.0
Abbreviations are allowed. `s` indicates `series` and `sp`
indicates `split`.
Returns
-------
result : dict like {column -> {index -> value}}
File: /usr/local/lib/python2.7/dist-packages/pandas/core/frame.py
Type: instancemethod