我正在研究如何在tensorflow中保存/加载特定变量。
我可以毫无问题地加载和保存特定变量,但是,我无法弄清楚如何在不使用
的情况下初始化剩余的未保存变量sess.run(tf.global_variables_initializer())
然后用:
覆盖保存的变量new_saver.restore(sess,'my_test_model2')
这可以正常工作并初始化未保存的变量(w2)并恢复已保存的变量(w1),但看起来非常笨拙且不讽刺。
我想知道如何摆脱
tf.global_variables_initializer()
,在我恢复w1变量的最后,到pythonic工作的东西。
我尝试了sess.run(tf.variables_initializer([w2]))
并得到了输入:“^ w2 / Assign”不是此图的元素。)
我也试过sess.run(tf.variables_initializer(["w2:0"]))
并且得到了AttributeError:'str'对象没有属性'initializer'
导入tensorflow为tf
print(tf.__version__)
w1 = tf.Variable(tf.linspace(0.0, 0.5, 6), name="w1")
w2 = tf.Variable(tf.linspace(1.0, 5.0, 6), name="w2")
saver = tf.train.Saver({'w1':w1})
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for v in tf.global_variables():
print (v.name)
print(sess.run(["w1:0"]))
print(sess.run(["w2:0"]))
saver.save(sess, 'my_test_model')
tf.reset_default_graph()
print ('-'*80 )
w1 = tf.Variable(tf.linspace(10.0, 50.0, 6), name="w1")
w2 = tf.Variable(tf.linspace(100.0, 500.0, 6), name="w2")
saver = tf.train.Saver({'w1':w1})
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for v in tf.global_variables():
print (v.name)
print(sess.run(["w1:0"]))
print(sess.run(["w2:0"]))
saver.save(sess, 'my_test_model2')
tf.reset_default_graph()
print ('-'*80 )
print("Let's load w1 \n")
with tf.Session() as sess:
# Loading the model structure from 'my_test_model.meta'
new_saver = tf.train.import_meta_graph('my_test_model.meta')
# I do this to make sure w1:0 and w2:0 are variables
for v in tf.global_variables():
print (v.name)
sess.run(tf.global_variables_initializer()) #<----- line I want to make more pythonic
# sess.run(tf.variables_initializer([w2])) # input: "^w2/Assign" is not an element of this graph.)
# sess.run(tf.variables_initializer(["w2:0"])) #AttributeError: 'str' object has no attribute 'initializer'
# Loading the saved "w1" Variable
new_saver.restore(sess,'my_test_model2')
print(sess.run(["w1:0"]))
print(sess.run(["w2:0"]))
答案 0 :(得分:1)
最后看了之后:
In TensorFlow is there any way to just initialize uninitialised variables?
我喜欢https://stackoverflow.com/users/1090562/salvador-dali回答并将其修改为使用itertools.compress
,如果变量超过少数,则速度要快得多。
def initialize_uninitialized_vars(sess):
from itertools import compress
global_vars = tf.global_variables()
is_not_initialized = sess.run([~(tf.is_variable_initialized(var)) \
for var in global_vars])
not_initialized_vars = list(compress(global_vars, is_not_initialized))
if len(not_initialized_vars):
sess.run(tf.variables_initializer(not_initialized_vars))
我的代码变为:
with tf.Session() as sess:
# Loading the model structure from 'my_test_model.meta'
new_saver = tf.train.import_meta_graph('my_test_model.meta')
# Loading the saved "w1" Variable
new_saver.restore(sess,'my_test_model2')
# initialize the unitialized variables
initialize_uninitialized_vars(sess)
print(sess.run(["w1:0"]))
print(sess.run(["w2:0"]))