我不确定这是否已经是最快的方法,或者我的效率是否低效。
我想对具有27k +可能级别的特定分类列进行热编码。该列在2个不同的数据集中具有不同的值,因此在使用get_dummies()
之前我首先合并了这些级别%s/\(a-z\)\zs : \1\ze//
然而,它已运行超过2个小时,它仍然是热编码。
我可以在这里做错事吗?或者只是在大型数据集上运行它的本质?
Df有6.8米行和27列,在热编码我想要的列之前,Df2有19990行和27列。
建议表示赞赏,谢谢! :)
答案 0 :(得分:2)
我简要回顾了get_dummies source code,我认为它可能无法充分利用您的用例的稀疏性。以下方法可能更快,但我没有尝试将其一直扩展到您拥有的19M记录:
import numpy as np
import pandas as pd
import scipy.sparse as ssp
np.random.seed(1)
N = 10000
dfa = pd.DataFrame.from_dict({
'col1': np.random.randint(0, 27000, N)
, 'col2b': np.random.choice([1, 2, 3], N)
, 'target': np.random.choice([1, 2, 3], N)
})
# construct an array of the unique values of the column to be encoded
vals = np.array(dfa.col1.unique())
# extract an array of values to be encoded from the dataframe
col1 = dfa.col1.values
# construct a sparse matrix of the appropriate size and an appropriate,
# memory-efficient dtype
spmtx = ssp.dok_matrix((N, len(vals)), dtype=np.uint8)
# do the encoding. NB: This is only vectorized in one of the two dimensions.
# Finding a way to vectorize the second dimension may yield a large speed up
for idx, val in enumerate(vals):
spmtx[np.argwhere(col1 == val), idx] = 1
# Construct a SparseDataFrame from the sparse matrix and apply the index
# from the original dataframe and column names.
dfnew = pd.SparseDataFrame(spmtx, index=dfa.index,
columns=['col1_' + str(el) for el in vals])
dfnew.fillna(0, inplace=True)
<强>更新强>
借鉴其他答案here和here的见解,我能够在两个维度中对解决方案进行矢量化。在我的有限测试中,我注意到构造SparseDataFrame似乎会将执行时间增加几倍。因此,如果您不需要返回类似DataFrame的对象,则可以节省大量时间。此解决方案还处理需要将2个以上DataFrame编码为具有相同列数的2-d数组的情况。
import numpy as np
import pandas as pd
import scipy.sparse as ssp
np.random.seed(1)
N1 = 10000
N2 = 100000
dfa = pd.DataFrame.from_dict({
'col1': np.random.randint(0, 27000, N1)
, 'col2a': np.random.choice([1, 2, 3], N1)
, 'target': np.random.choice([1, 2, 3], N1)
})
dfb = pd.DataFrame.from_dict({
'col1': np.random.randint(0, 27000, N2)
, 'col2b': np.random.choice(['foo', 'bar', 'baz'], N2)
, 'target': np.random.choice([1, 2, 3], N2)
})
# construct an array of the unique values of the column to be encoded
# taking the union of the values from both dataframes.
valsa = set(dfa.col1.unique())
valsb = set(dfb.col1.unique())
vals = np.array(list(valsa.union(valsb)), dtype=np.uint16)
def sparse_ohe(df, col, vals):
"""One-hot encoder using a sparse ndarray."""
colaray = df[col].values
# construct a sparse matrix of the appropriate size and an appropriate,
# memory-efficient dtype
spmtx = ssp.dok_matrix((df.shape[0], vals.shape[0]), dtype=np.uint8)
# do the encoding
spmtx[np.where(colaray.reshape(-1, 1) == vals.reshape(1, -1))] = 1
# Construct a SparseDataFrame from the sparse matrix
dfnew = pd.SparseDataFrame(spmtx, dtype=np.uint8, index=df.index,
columns=[col + '_' + str(el) for el in vals])
dfnew.fillna(0, inplace=True)
return dfnew
dfanew = sparse_ohe(dfa, 'col1', vals)
dfbnew = sparse_ohe(dfb, 'col1', vals)