我试图使用数学组件库来证明以下内容:
Lemma bigsum_aux (i: 'I_q) (j: 'I_q) (F G : 'I_q -> R):
(forall i0, F i0 <= G i0) /\ (exists j0, F j0 < G j0) ->
\sum_(i < q) F i < \sum_(i < q) G i.
最初,我试图在bigsum_aux
或ssralg
的文档中找到与bigop
相当的引理,但我找不到任何引理;所以这就是我迄今为止所能做到的:
Proof.
move => [Hall Hex]. rewrite ltr_neqAle ler_sum; last first.
- move => ? _. exact: Hall.
- rewrite andbT. (* A: What now? *)
欢迎对相关引理的任何帮助或指示。
答案 0 :(得分:2)
你想要在&#34;坏&#34;中分割总和。 (&lt;)部分,其余部分是微不足道的:
From mathcomp Require Import all_ssreflect all_algebra.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Open Scope ring_scope.
Import Num.Theory.
Lemma bigsum_aux (R : numDomainType) q (i: 'I_q) (j: 'I_q) (F G : 'I_q -> R)
(hle : forall i0, F i0 <= G i0) z (hlt : F z < G z) :
\sum_(i < q) F i < \sum_(i < q) G i.
Proof.
by rewrite [\sum__ F _](bigD1 z) ?[\sum__ G _](bigD1 z) ?ltr_le_add ?ler_sum.
Qed.