与How to access values in protos in TensorFlow?类似,但并不适合这种情况。
我在TensorProto中看到bytes tensor_content
属性。我试图通过以下方式获取有关节点的信息:
for node in tf.get_default_graph().as_graph_def().node:
node.attr['value'].tensor.tensor_content # decode these bytes
有关信息,节点的打印如下所示:
name: "conv2d/convolution/Shape"
op: "Const"
device: "/device:GPU:0"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 4
}
}
tensor_content: "\003\000\000\000\003\000\000\000\001\000\000\000 \000\000\000"
}
}
}
答案 0 :(得分:9)
from tensorflow.python.framework import tensor_util
for n in tf.get_default_graph().as_graph_def().node:
print tensor_util.MakeNdarray(n.attr['value'].tensor)
答案 1 :(得分:1)
解码tensor_array字节,然后按照给定形状进行整形:
for node in tf.get_default_graph.as_graph_def().node:
tensor_bytes = node.attr["value"].tensor.tensor_content
tensor_dtype = node.attr["value"].tensor.dtype
tensor_shape = [x.size for x in node.attr["value"].tensor.tensor_shape.dim]
tensor_array = tf.decode_raw(tensor_bytes, tensor_dtype)
tensor_array = tf.reshape(tensor_array, tensor_shape)