我想在属于间隔的向量中找到值的索引,这些间隔由结束值的向量和1)“回顾”值区间和2)前N个值定义。
假设我有
x <- c(1,3,4,5,7,8,9,10,13,14,15,16,17,18) #the vector of interest
v_end <- c(5, 7, 15) #the end values
l<-3 #look-back value interval
N<-3 #number of value to look back
我想要的是以下输出的第二和第三列。
x i n
[1,] 1 0 1
[2,] 3 1 1
[3,] 4 1 1
[4,] 5 1 1
[5,] 7 1 1
[6,] 8 0 0
[7,] 9 0 0
[8,] 10 0 1
[9,] 13 1 1
[10,] 14 1 1
[11,] 15 1 1
[12,] 16 0 0
[13,] 17 0 0
[14,] 18 0 0
请注意,v_end和l导致三个区间[2,5],[4,7],[12,15]。 [2,5]和[4,7]有重叠,基本上是[2,7]。 并且,v_end和l导致三个区间[1,5],[3,7],[10,15]。再次有重叠。
该任务类似于函数findInterval {base},但无法通过它解决。
答案 0 :(得分:1)
订购&#34; v_end&#34;和&#34; x&#34; (对于&#34; N&#34;情况),&#34; l&#34;的间隔;案例是:
ints = cbind(start = v_end - l, end = v_end)
ints
# start end
#[1,] 2 5
#[2,] 4 7
#[3,] 12 15
他们的重叠可以与:
分组overlap_groups = cumsum(c(TRUE, ints[-nrow(ints), "end"] < ints[-1, "start"]))
可用于减少重叠的间隔:
group_end = cumsum(rle(overlap_groups)$lengths)
group_start = c(1L, group_end [-length(group_end )] + 1L)
ints2 = cbind(start = ints[group_start, "start"], end = ints[group_end, "end"])
ints2
# start end
#[1,] 2 7
#[2,] 12 15
然后使用findInterval
:
istart = findInterval(x, ints2[, "start"])
iend = findInterval(x, ints2[, "end"], left.open = TRUE)
i = as.integer((istart - iend) == 1L)
i
# [1] 0 1 1 1 1 0 0 0 1 1 1 0 0 0
对于&#34; N&#34;的情况,从:
开始ints = cbind(start = x[match(v_end, x) - N], end = v_end)
ints
# start end
#[1,] 1 5
#[2,] 3 7
#[3,] 10 15
按照上述步骤,我们得到:
#.....
n = as.integer((istart - iend) == 1L)
n
# [1] 1 1 1 1 1 0 0 1 1 1 1 0 0 0
通常,这种操作的便利工具是&#34; IRanges&#34;这里的方法简单明了:
library(IRanges)
xrng = IRanges(x, x)
i = as.integer(overlapsAny(xrng, reduce(IRanges(v_end - l, v_end), min.gapwidth = 0)))
i
# [1] 0 1 1 1 1 0 0 0 1 1 1 0 0 0
n = as.integer(overlapsAny(xrng, reduce(IRanges(x[match(v_end, x) - N], v_end), min.gapwidth = 0)))
n
# [1] 1 1 1 1 1 0 0 1 1 1 1 0 0 0