现在我在这里使用早期停留在Keras:
X,y= load_data('train_data')
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=12)
datagen = ImageDataGenerator(
horizontal_flip=True,
vertical_flip=True)
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=epochs_to_wait_for_improve)
history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size),
steps_per_epoch=len(X_train) / batch_size, validation_data=(X_test, y_test),
epochs=n_epochs, callbacks=[early_stopping_callback])
但在model.fit_generator
结束时,它会在epochs_to_wait_for_improve
之后保存模型,但我想用min val_loss
保存模型是否有意义并且可能吗?
答案 0 :(得分:7)
是的,可以再一次回调,这是代码:
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=epochs_to_wait_for_improve)
checkpoint_callback = ModelCheckpoint(model_name+'.h5', monitor='val_loss', verbose=1, save_best_only=True, mode='min')
history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size),
steps_per_epoch=len(X_train) / batch_size, validation_data=(X_test, y_test),
epochs=n_epochs, callbacks=[early_stopping_callback, checkpoint_callback])