我正在使用针对稀疏数据的特征值分解来实现PCA。我知道matlab实现了PCA,但它帮助我理解编写代码时的所有技术细节。 我一直在遵循here的指导,但与内置函数princomp相比,我得到了不同的结果。
任何人都可以看着它并指出我正确的方向。
以下是代码:
function [mu, Ev, Val ] = pca(data)
% mu - mean image
% Ev - matrix whose columns are the eigenvectors corresponding to the eigen
% values Val
% Val - eigenvalues
if nargin ~= 1
error ('usage: [mu,E,Values] = pca_q1(data)');
end
mu = mean(data)';
nimages = size(data,2);
for i = 1:nimages
data(:,i) = data(:,i)-mu(i);
end
L = data'*data;
[Ev, Vals] = eig(L);
[Ev,Vals] = sort(Ev,Vals);
% computing eigenvector of the real covariance matrix
Ev = data * Ev;
Val = diag(Vals);
Vals = Vals / (nimages - 1);
% normalize Ev to unit length
proper = 0;
for i = 1:nimages
Ev(:,i) = Ev(:,1)/norm(Ev(:,i));
if Vals(i) < 0.00001
Ev(:,i) = zeros(size(Ev,1),1);
else
proper = proper+1;
end;
end;
Ev = Ev(:,1:nimages);
答案 0 :(得分:14)
我将如何做到这一点:
function [V newX D] = myPCA(X)
X = bsxfun(@minus, X, mean(X,1)); %# zero-center
C = (X'*X)./(size(X,1)-1); %'# cov(X)
[V D] = eig(C);
[D order] = sort(diag(D), 'descend'); %# sort cols high to low
V = V(:,order);
newX = X*V(:,1:end);
end
以及与Statistics Toolbox中的PRINCOMP函数进行比较的示例:
load fisheriris
[V newX D] = myPCA(meas);
[PC newData Var] = princomp(meas);
您可能也对这篇关于执行PCA by SVD的相关帖子感兴趣。