来自VPython的简单示例的奇怪行为

时间:2017-05-13 15:25:39

标签: python python-2.7 vpython

我正在尝试执行VPython附带的名为'gas.py'的示例。我已经从VPython web(Python 2.7)和VPython 6.11完成了新的Python安装。

Vpython附带的每个例子都适用于我,但是'gas.py'。它汇编并执行,并且在第一次运行中,它等待5秒钟并冻结。下一次运行甚至没有显示任何图表。

我无法找到解决方案,因为它是一个正常工作的代码,并且库似乎正常工作,因为所有其他示例(43)都像魅力一样工作。

任何建议都会有所帮助,谢谢。

from visual import *
from visual.graph import *
from random import random

# A model of an ideal gas with hard-sphere collisions
# Program uses numpy arrays for high speed computations

# Bruce Sherwood

win=500

Natoms = 100  # change this to have more or fewer atoms

# Typical values
L = 1. # container is a cube L on a side
gray = (0.7,0.7,0.7) # color of edges of container
Matom = 4E-3/6E23 # helium mass
Ratom = 0.03 # wildly exaggerated size of helium atom
k = 1.4E-23 # Boltzmann constant
T = 300. # around room temperature
dt = 1E-5

scene = display(title="Gas", width=win, height=win, x=0, y=0,
                center=(L/2.,L/2.,L/2.))

deltav = 100. # binning for v histogram
vdist = gdisplay(x=0, y=win, ymax = Natoms*deltav/1000.,
             width=win, height=0.6*win, xtitle='v', ytitle='dN')
theory = gcurve(color=color.cyan)

dv = 10.
for v in arange(0.,3001.+dv,dv): # theoretical prediction
    theory.plot(pos=(v,
        (deltav/dv)*Natoms*4.*pi*((Matom/(2.*pi*k*T))**1.5)
                     *exp((-0.5*Matom*v**2)/(k*T))*v**2*dv))

observation = ghistogram(bins=arange(0.,3000.,deltav),
                        accumulate=1, average=1, color=color.red)

xaxis = curve(pos=[(0,0,0), (L,0,0)], color=gray)
yaxis = curve(pos=[(0,0,0), (0,L,0)], color=gray)
zaxis = curve(pos=[(0,0,0), (0,0,L)], color=gray)
xaxis2 = curve(pos=[(L,L,L), (0,L,L), (0,0,L), (L,0,L)], color=gray)
yaxis2 = curve(pos=[(L,L,L), (L,0,L), (L,0,0), (L,L,0)], color=gray)
zaxis2 = curve(pos=[(L,L,L), (L,L,0), (0,L,0), (0,L,L)], color=gray)

Atoms = []
##colors = [color.red, color.green, color.blue,
##          color.yellow, color.cyan, color.magenta]
poslist = []
plist = []
mlist = []
rlist = []

for i in range(Natoms):
    Lmin = 1.1*Ratom
    Lmax = L-Lmin
    x = Lmin+(Lmax-Lmin)*random()
    y = Lmin+(Lmax-Lmin)*random()
    z = Lmin+(Lmax-Lmin)*random()
    r = Ratom
##    Atoms = Atoms+[sphere(pos=(x,y,z), radius=r, color=colors[i % 6])]
    if i == 0:
        Atoms.append(sphere(pos=(x,y,z), radius=r, color=color.yellow,
                    make_trail=True, retain=100))
##        Atoms[0].trail_object.radius = 1
    else:
        Atoms.append(sphere(pos=(x,y,z), radius=r, color=color.cyan))
    mass = Matom*r**3/Ratom**3
    pavg = sqrt(2.*mass*1.5*k*T) # average kinetic energy p**2/(2mass) = (3/2)kT
    theta = pi*random()
    phi = 2*pi*random()
    px = pavg*sin(theta)*cos(phi)
    py = pavg*sin(theta)*sin(phi)
    pz = pavg*cos(theta)
    poslist.append((x,y,z))
    plist.append((px,py,pz))
    mlist.append(mass)
    rlist.append(r)

pos = array(poslist)
p = array(plist)
m = array(mlist)
m.shape = (Natoms,1) # Numeric Python: (1 by Natoms) vs. (Natoms by 1)
radius = array(rlist)

pos = pos+(p/m)*(dt/2.) # initial half-step

while True:
    rate(50)
    observation.plot(data=mag(p/m))

    # Update all positions
    pos = pos+(p/m)*dt

    r = pos-pos[:,newaxis] # all pairs of atom-to-atom vectors
    rmag = sqrt(sum(square(r),-1)) # atom-to-atom scalar distances
    hit = less_equal(rmag,radius+radius[:,None])-identity(Natoms)
    hitlist = sort(nonzero(hit.flat)[0]).tolist() # i,j encoded as i*Natoms+j

    # If any collisions took place:
    for ij in hitlist:
        i, j = divmod(ij,Natoms) # decode atom pair
        hitlist.remove(j*Natoms+i) # remove symmetric j,i pair from list
        ptot = p[i]+p[j]
        mi = m[i,0]
        mj = m[j,0]
        vi = p[i]/mi
        vj = p[j]/mj
        ri = Atoms[i].radius
        rj = Atoms[j].radius
        a = mag(vj-vi)**2
        if a == 0: continue # exactly same velocities
        b = 2*dot(pos[i]-pos[j],vj-vi)
        c = mag(pos[i]-pos[j])**2-(ri+rj)**2
        d = b**2-4.*a*c
        if d < 0: continue # something wrong; ignore this rare case
        deltat = (-b+sqrt(d))/(2.*a) # t-deltat is when they made contact
        pos[i] = pos[i]-(p[i]/mi)*deltat # back up to contact configuration
        pos[j] = pos[j]-(p[j]/mj)*deltat
        mtot = mi+mj
        pcmi = p[i]-ptot*mi/mtot # transform momenta to cm frame
        pcmj = p[j]-ptot*mj/mtot
        rrel = norm(pos[j]-pos[i])
        pcmi = pcmi-2*dot(pcmi,rrel)*rrel # bounce in cm frame
        pcmj = pcmj-2*dot(pcmj,rrel)*rrel
        p[i] = pcmi+ptot*mi/mtot # transform momenta back to lab frame
        p[j] = pcmj+ptot*mj/mtot
        pos[i] = pos[i]+(p[i]/mi)*deltat # move forward deltat in time
        pos[j] = pos[j]+(p[j]/mj)*deltat

    # Bounce off walls
    outside = less_equal(pos,Ratom) # walls closest to origin
    p1 = p*outside
    p = p-p1+abs(p1) # force p component inward
    outside = greater_equal(pos,L-Ratom) # walls farther from origin
    p1 = p*outside
    p = p-p1-abs(p1) # force p component inward

    # Update positions of display objects
    for i in range(Natoms):
        Atoms[i].pos = pos[i]

0 个答案:

没有答案