我在python中研究区域增长算法的实现。但是当我在输出上运行此代码时,我得到的黑色图像没有错误。在输入图像和种子值上使用CV阈值函数我使用鼠标单击在元组中存储x,y值。
def get8n(x, y, shape):
out = []
if y-1 > 0 and x-1 > 0:
out.append( (y-1, x-1) )
if y-1 > 0 :
out.append( (y-1, x))
if y-1 > 0 and x+1 < shape[1]:
out.append( (y-1, x+1))
if x-1 > 0:
out.append( (y, x-1))
if x+1 < shape[1]:
out.append( (y, x+1))
if y+1 < shape[0] and x-1 > 0:
out.append( ( y+1, x-1))
if y+1 < shape[0] :
out.append( (y+1, x))
if y+1 < shape[0] and x+1 < shape[1]:
out.append( (y+1, x+1))
return out
def region_growing(img, seed):
list = []
outimg = np.zeros_like(img)
list.append((seed[0], seed[1]))
while(len(list)):
pix = list[0]
outimg[pix[0], pix[1]] = 255
for coord in get8n(pix[0], pix[1], img.shape):
if img[coord[0], coord[1]] > 0:
outimg[coord[0], coord[1]] = 255
list.append((coord[0], coord[1]))
list.pop(0)
return outimg
def on_mouse(event, x, y, flags, params):
if event == cv2.EVENT_LBUTTONDOWN:
print 'Seed: ' + str(x) + ', ' + str(y)
clicks.append((y,x))
clicks = []
image = cv2.imread('lena.jpg', 0)
ret, img = cv2.threshold(image, 200, 255, cv2.THRESH_BINARY)
cv2.namedWindow('Input')
cv2.setMouseCallback('Input', on_mouse, 0, )
cv2.imshow('Input', img)
cv2.waitKey()
seed = clicks[-1]
cv2.imshow('Region Growing', region_growing(img, seed))
cv2.waitKey()
cv2.destroyAllWindows()
答案 0 :(得分:2)
我的get8n()函数遇到了一些问题所以我重写了它。我相信下面的代码可以满足您的要求。 region_growing()函数中有两行被注释掉。如果取消注释它们,它们将显示处理过程中发生的动画。这是一种可视化代码并让您了解事情失败的好方法。
此外,在您的代码中,您可以将已经处理过的像素添加到“待处理”列表中。这导致无限循环。我添加了一个检查,以防止已处理的像素被添加回列表。
import cv2
import numpy as np
def get8n(x, y, shape):
out = []
maxx = shape[1]-1
maxy = shape[0]-1
#top left
outx = min(max(x-1,0),maxx)
outy = min(max(y-1,0),maxy)
out.append((outx,outy))
#top center
outx = x
outy = min(max(y-1,0),maxy)
out.append((outx,outy))
#top right
outx = min(max(x+1,0),maxx)
outy = min(max(y-1,0),maxy)
out.append((outx,outy))
#left
outx = min(max(x-1,0),maxx)
outy = y
out.append((outx,outy))
#right
outx = min(max(x+1,0),maxx)
outy = y
out.append((outx,outy))
#bottom left
outx = min(max(x-1,0),maxx)
outy = min(max(y+1,0),maxy)
out.append((outx,outy))
#bottom center
outx = x
outy = min(max(y+1,0),maxy)
out.append((outx,outy))
#bottom right
outx = min(max(x+1,0),maxx)
outy = min(max(y+1,0),maxy)
out.append((outx,outy))
return out
def region_growing(img, seed):
list = []
outimg = np.zeros_like(img)
list.append((seed[0], seed[1]))
processed = []
while(len(list) > 0):
pix = list[0]
outimg[pix[0], pix[1]] = 255
for coord in get8n(pix[0], pix[1], img.shape):
if img[coord[0], coord[1]] != 0:
outimg[coord[0], coord[1]] = 255
if not coord in processed:
list.append(coord)
processed.append(coord)
list.pop(0)
#cv2.imshow("progress",outimg)
#cv2.waitKey(1)
return outimg
def on_mouse(event, x, y, flags, params):
if event == cv2.EVENT_LBUTTONDOWN:
print 'Seed: ' + str(x) + ', ' + str(y), img[y,x]
clicks.append((y,x))
clicks = []
image = cv2.imread('lena.bmp', 0)
ret, img = cv2.threshold(image, 128, 255, cv2.THRESH_BINARY)
cv2.namedWindow('Input')
cv2.setMouseCallback('Input', on_mouse, 0, )
cv2.imshow('Input', img)
cv2.waitKey()
seed = clicks[-1]
out = region_growing(img, seed)
cv2.imshow('Region Growing', out)
cv2.waitKey()
cv2.destroyAllWindows()
点击她的帽子左侧时的结果如下:
答案 1 :(得分:0)
上面提出的解决方案在概念上是正确的,但从数字的角度来看,它们包含一些严重的问题,使它们的像素数排序为 N^2。如果您可以将信息存储在提供随机访问的数组中,则无需在列表中搜索像素,也可以对连通性函数进行 cythonized。此外,如果能够提供您自己的相似度函数,那就太好了。
所以这是我对在 Jupyter 笔记本中运行的改进的、绝对更快的版本的建议:
导入的第一个单元格:
import numpy as np
import cv2
%pylab inline
%load_ext Cython
第二个单元格(不要合并第一个):
%%cython
# Use %%cython -a for more verbose output, note %%cython should be on the first line in the cell!
def get_8_connected(int x, int y, shape):
cdef int xmax = shape[0]-1
cdef int ymax = shape[1]-1
cdef int connected_pixel_x
cdef int connected_pixel_y
cdef int dx, dy
connected_pixels = list()
for dx in range(3):
for dy in range(3):
connected_pixel_x = x + dx - 1
connected_pixel_y = y + dy - 1
if connected_pixel_x < 0 or connected_pixel_x > xmax or \
connected_pixel_y < 0 or connected_pixel_y > ymax or \
(connected_pixel_x == x and connected_pixel_y == y):
pass
else:
connected_pixels.append((connected_pixel_x,connected_pixel_y))
return connected_pixels
区域合并的第三个单元格
def region_growing(img,
seed_points,
test = lambda seed_x, seed_y, x, y, img, outimg : img[x,y] != 0,
colormap=None):
processed = np.full((img.shape[0],img.shape[1]), False)
if colormap is None:
outimg = np.zeros_like(img)
else:
outimg = np.zeros((img.shape[0],img.shape[1],colormap.shape[1]),dtype=np.uint8)
for index, pix in enumerate(seed_points):
processed[pix[0], pix[1]] = True
if colormap is None:
outimg[pix[0], pix[1]] = img[pix[0], pix[1]]
else:
outimg[pix[0], pix[1]] = colormap[index % len(colormap)]
while(len(seed_points) > 0):
pix = seed_points[0]
for coord in get_8_connected(pix[0], pix[1], img.shape):
if not processed[coord[0],coord[1]]:
test_result = test(pix[0], pix[1], coord[0], coord[1], img, outimg)
if test_result:
outimg[coord[0], coord[1]] = outimg[pix[0], pix[1]]
if not processed[coord[0],coord[1]]:
seed_points.append(coord)
processed[coord[0],coord[1]] = True
seed_points.pop(0)
return outimg
并且可以使用与以前相同的逻辑从另一个单元格调用它:
def on_mouse(event, x, y, flags, params):
if event == cv2.EVENT_LBUTTONDOWN:
print( 'Seed: ' + str(x) + ', ' + str(y), img[y,x])
clicks.append((int(y), int(x)))
clicks = []
image = cv2.imread('lena.bmp', 0)
ret, img = cv2.threshold(image, 128, 255, cv2.THRESH_BINARY)
cv2.namedWindow('Input')
cv2.setMouseCallback('Input', on_mouse, 0, )
cv2.imshow('Input', img)
cv2.waitKey()
cv2.destroyAllWindows()
seed = clicks
out = region_growing(img, seed)
cv2.imshow('Region Growing', out)
cv2.waitKey()
cv2.destroyAllWindows()
有一些小的功能差异。输出中的区域要么由种子处的原始图像的值标记,要么由可选颜色图中的值标记。颜色图需要指定给定 als 无符号 8 位整数的 RGB 颜色。也可以传入一个定制的测试函数,替换:
test = lambda seed_x, seed_y, x, y, img, outimg : img[x,y] != 0
例如:
test = lambda seed_x, seed_y, x, y, img, outimg : abs(img[x,y] - img[seed_x, seed_y]) < 4
将产生所有连接到原始种子且强度步长低于 4 的像素。
在我的上下文中,它适用于单色和彩色图像。这既适用于 2d 数组,也适用于 3D 数组。
如果 Cython 无法使用,函数 get_8_connected
可以替换为:
def get_8_connected(x, y, shape):
xmax = shape[0]-1
ymax = shape[1]-1
connected_pixels = list()
for dx in range(3):
for dy in range(3):
connected_pixel_x = x + dx - 1
connected_pixel_y = y + dy - 1
if connected_pixel_x < 0 or connected_pixel_x > xmax or \
connected_pixel_y < 0 or connected_pixel_y > ymax or \
(connected_pixel_x == x and connected_pixel_y == y):
pass
else:
connected_pixels.append((connected_pixel_x,connected_pixel_y))
return connected_pixels```
答案 2 :(得分:-1)
针对python 3.x的添加(),例如:print(“ Some something”)