如何将元素功能元素应用于pandas DataFrame并传递逐列计算值(例如列的分位数)?例如,如果我想替换DataFrame中的所有元素(使用NaN
),其中值低于列的第80个百分点,该怎么办?
def _deletevalues(x, quantile):
if x < quantile:
return np.nan
else:
return x
df.applymap(lambda x: _deletevalues(x, x.quantile(0.8)))
使用applymap
只允许一个人单独访问每个值并抛出(当然)AttributeError: ("'float' object has no attribute 'quantile'
提前谢谢。
答案 0 :(得分:6)
df = df.mask(df < df.quantile())
print (df)
a b c
0 NaN 7.0 NaN
1 NaN NaN 6.0
2 NaN NaN 5.0
3 8.0 NaN NaN
4 7.0 3.0 5.0
5 6.0 7.0 NaN
6 NaN NaN NaN
7 8.0 4.0 NaN
8 NaN NaN 6.0
9 7.0 7.0 6.0
答案 1 :(得分:2)
In [139]: df
Out[139]:
a b c
0 1 7 3
1 1 2 6
2 3 0 5
3 8 2 1
4 7 3 5
5 6 7 2
6 0 2 1
7 8 4 1
8 5 0 6
9 7 7 6
所有列:
In [145]: df.apply(lambda x: np.where(x < x.quantile(),np.nan,x))
Out[145]:
a b c
0 NaN 7.0 NaN
1 NaN NaN 6.0
2 NaN NaN 5.0
3 8.0 NaN NaN
4 7.0 3.0 5.0
5 6.0 7.0 NaN
6 NaN NaN NaN
7 8.0 4.0 NaN
8 NaN NaN 6.0
9 7.0 7.0 6.0
或
In [149]: df[df < df.quantile()] = np.nan
In [150]: df
Out[150]:
a b c
0 NaN 7.0 NaN
1 NaN NaN 6.0
2 NaN NaN 5.0
3 8.0 NaN NaN
4 7.0 3.0 5.0
5 6.0 7.0 NaN
6 NaN NaN NaN
7 8.0 4.0 NaN
8 NaN NaN 6.0
9 7.0 7.0 6.0