我的TensorFlow版本是1.0。 当我运行以下代码时:
train_file='~/tf_code/train'
filename_queue = tf.train.string_input_producer([train_file],num_epochs=None)
reader = tf.TFRecordReader()
_, ex = reader.read(filename_queue)
sequence_features = {
"x":tf.FixedLenSequenceFeature([], dtype = tf.int64),
"tomatch_indices_1D":tf.FixedLenSequenceFeature([], dtype = tf.int64)
}
context_parsed, sequence_parsed = tf.parse_single_sequence_example(
serialized=ex,
context_features={},
sequence_features=sequence_features
)
indices = tf.cast(sequence_parsed['tomatch_indices_1D'],tf.int64)
indices = tf.reshape(indices, (-1,3))
x = sequence_parsed['x']
lens = tf.shape(x)[0]
tomatch_sparse = tf.SparseTensor(indices, tf.ones((tf.shape(indices)[0],)),
dense_shape=(lens,lens,lens))
tomatch = tf.sparse_tensor_to_dense(tomatch_sparse, validate_indices=False)
print(tomatch)
然后我在tf.SparseTensor()上得到了这个错误:
Traceback (most recent call last):
File "/Users/qingping/tf_code/SequenceExample/example_test.py", line 284, in <module>
stack_test()
File "/Users/qingping/tf_code/SequenceExample/example_test.py", line 276, in stack_test
tomatch_sparse = tf.SparseTensor(indices, tf.ones((tf.shape(indices)[0],)), dense_shape=(lens,lens,lens))
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/sparse_tensor.py", line 127, in __init__
dense_shape, name="dense_shape", dtype=dtypes.int64)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 637, in convert_to_tensor
as_ref=False)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 702, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 110, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 99, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 367, in make_tensor_proto
_AssertCompatible(values, dtype)
File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 302, in _AssertCompatible
(dtype.name, repr(mismatch), type(mismatch).__name__))
TypeError: Expected int64, got list containing Tensors of type '_Message' instead.
如果我想通过从文件读取数据(索引)来构建SparseTensor,并且SparseTensor的dense_shape变化,我该怎么办?谢谢!
答案 0 :(得分:1)
我认为当TensorFlow尝试将tf.int32
张量(lens, lens, lens)
的元组转换为单个tf.int64
张量作为{dense_shape
参数时,会出现此错误消息1}}。
tf.shape()
的默认返回值为tf.SparseTensor
。您可以在计算tf.int32
时通过添加显式out_type
参数来解决此问题,如下所示:
lens