让数据为:
> dput(df)
structure(list(NAME.x = c("ANNE", "BOB", "CATHY", "DIANNE", "EMILY"
), NAME.y = c(NA, "BOB", "CATHY", "DIANNE", NA), AGE.x = c("81",
"47", "47", "47", "37"), AGE.y = c(NA, "47", "47", "47", NA),
ADMISSIONDATE.x = structure(c(1380751296, 1382088000, 1382088000,
1382088000, 1383207720), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
ADMISSIONDATE.y = structure(c(NA, 1382088000, 1382088000,
1382088000, NA), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
DISCHARGEDDATE.x = structure(c(1381172735, 1382189165, 1382189165,
1382189165, 1383250549), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
DISCHARGEDDATE.y = structure(c(NA, 1382189165, 1382189165,
1382189165, NA), class = c("POSIXct", "POSIXt"), tzone = "UTC")), row.names = c(NA,
-5L), .Names = c("NAME.x", "NAME.y", "AGE.x", "AGE.y", "ADMISSIONDATE.x",
"ADMISSIONDATE.y", "DISCHARGEDDATE.x", "DISCHARGEDDATE.y"), class = "data.frame")
我想检查此数据集中常见变量之间的相似性和差异。我试着编写一个函数,其中3个参数是数据集,数据集中有2个变量。
check<-function(data,var1,var2){
# X1: x and y are equal
# X2: x and y are not equal
# Y1: x and y are non-empty
# Y2: x and y are empty
# Z1: x is non-empty and y is empty
# Z2: x is empty and y is non-empty
cnt_each<-data %>%
mutate(X1 = (var1==var2),
X2 = (var1!=var2),
Y1 = (!is.na(var1) & !is.na(var2)),
Y2 = (is.na(var1) & is.na(var2)),
Z1 = (!is.na(var1) & is.na(var2)),
Z2 = (is.na(var1) & !is.na(var2))) %>%
summarise_at("X1:Z2",funs(sum(.))) %>%
mutate(sum_all=sum(.,na.rm=TRUE))
return(cnt_each)
}
但是,它在运行时会出错。在函数外部运行代码时没有错误。
check(df,NAME.x,NAME.y)
mutate_impl(.data,dots)中的错误:object&#39; NAME.x&#39;找不到
答案 0 :(得分:2)
我们可以使用dplyr
的devel版本(即将发布0.6.0
来执行此操作)。 enquo
获取输入参数并转换为quosure
。在mutate/summarise/group_by
内,不带引号(!!
或UQ
)进行评估
check<-function(data,var1,var2){
var1 <- enquo(var1)
var2 <- enquo(var2)
data %>%
mutate(X1 = UQ(var1)==UQ(var2),
X2 = UQ(var1) != UQ(var2),
Y1 = !is.na(UQ(var1)) & !is.na(UQ(var2)),
Y2 = is.na(UQ(var1)) & is.na(UQ(var2)),
Z1 = !is.na(UQ(var1)) & !is.na(UQ(var2)),
Z2 = is.na(UQ(var1)) & !is.na(UQ(var2))) %>%
summarise_at(vars(X1:Z2), funs(sum(., na.rm = TRUE))) %>%
mutate(sum_all = rowSums(., na.rm = TRUE))
}
check(df, NAME.x, NAME.y)
# X1 X2 Y1 Y2 Z1 Z2 sum_all
#1 3 0 3 0 3 0 9