这个问题与我发布的另一个问题有关。 Pandas - check if a string column in one dataframe contains a pair of strings from another dataframe
我的目标是检查数据框的两个不同列是否包含一对字符串值,如果满足条件,则提取其中一个值。
我有两个这样的数据框:
df1 = pd.DataFrame({'consumption':['squirrelate apple', 'monkey likesapple',
'monkey banana gets', 'badger/getsbanana', 'giraffe eats grass', 'badger apple.loves', 'elephant is huge', 'elephant/eats/', 'squirrel.digsingrass'],
'name': ['apple', 'appleisred', 'banana is tropical', 'banana is soft', 'lemon is sour', 'washington apples', 'kiwi', 'bananas', 'apples']})
df2 = pd.DataFrame({'food':['apple', 'apple', 'banana', 'banana'], 'creature':['squirrel', 'badger', 'monkey', 'elephant']})
In [187]:df1
Out[187]:
consumption name
0 squirrelate apple apple
1 monkey likesapple appleisred
2 monkey banana gets banana is tropical
3 badger/getsbanana banana is soft
4 giraffe eats grass lemon is sour
5 badger apple.loves washington apples
6 elephant is huge kiwi
7 elephant/eats/ bananas
8 squirrel.digsingrass apples
In[188]: df2
Out[188]:
creature food
0 squirrel apple
1 badger apple
2 monkey banana
3 elephant banana
我想做的是测试苹果'发生在df1['name']
和' squirrel'发生在df1['consumption']
,如果两个条件都满足,则提取“松鼠”。从df1['consumption']
到新列df['creature']
。结果应如下所示:
Out[189]:
consumption creature name
0 squirrelate apple squirrel apple
1 monkey likesapple NaN appleisred
2 monkey banana gets monkey banana is tropical
3 badger/getsbanana NaN banana is soft
4 giraffe eats grass NaN lemon is sour
5 badger apple.loves badger washington apples
6 elephant is huge NaN kiwi
7 elephant/eats/ elephant bananas
8 squirrel.digsingrass NaN apples
如果没有配对值约束,我可以做一些简单的事情:
np.where((df1['consumption'].str.contains(<creature_string>, case = False)) & (df1['name'].str.contains(<food_string>, case = False)), df['consumption'].str.extract(<creature_string>), np.nan)
但我必须检查配对,所以我尝试将食物字典作为键和生物作为值,然后为给定的食物键制作所有生物的字符串var并查找使用str.contains的那些:
unique_food = df2.food.unique()
food_dict = {elem : pd.DataFrame for elem in unique_food}
for key in food_dict.keys():
food_dict[key] = df2[:][df2.food == key]
# create key:value pairs of food key and creature strings
food_strings = {}
for key, values in food_dict.items():
food_strings.update({key: '|'.join(map(str, list(food_dict[key]['creature'].unique())))})
In[199]: food_strings
Out[199]: {'apple': 'squirrel|badger', 'banana': 'monkey|elephant'}
问题是我现在尝试应用str.contains:
for key, value in food_strings.items():
np.where((df1['name'].str.contains('('+food_strings[key]+')', case = False)) &
(df1['consumption'].str.contains('('+food_strings[value]+')', case = False)), df1['consumptions'].str.extract('('+food_strings[value]+')'), np.nan)
我得到KeyError:
。
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-62-7ab718066040> in <module>()
1 for key, value in food_strings.items():
2 np.where((df1['name'].str.contains('('+food_strings[key]+')', case = False)) &
----> 3 (df1['consumption'].str.contains('('+food_strings[value]+')', case = False)), df1['consumption'].str.extract('('+food_strings[value]+')'), np.nan)
KeyError: 'squirrel|badger'
当我只尝试值而不是键时,它适用于第一个键:值对但不适用于第二个键:
for key in food_strings.keys():
df1['test'] = np.where(df1['consumption'].str.contains('('+food_strings[key]+')', case =False),
df1['consumption'].str.extract('('+food_strings[key]+')', expand=False),
np.nan)
df1
Out[196]:
consumption name test
0 squirrelate apple apple squirrel
1 monkey likesapple appleisred NaN
2 monkey banana gets banana is tropical NaN
3 badger/getsbanana banana is soft badger
4 giraffe eats grass lemon is sour NaN
5 badger apple.loves washington apples badger
6 elephant is huge kiwi NaN
7 elephant/eats/ bananas NaN
8 squirrel.digsingrass apples squirrel
我找到了与苹果和松鼠相匹配的獾但是错过了香蕉:猴子|大象。
有人可以帮忙吗?答案 0 :(得分:2)
d1 = df1.dropna()
d2 = df2.dropna()
sump = d1.consumption.values.tolist()
name = d1.name.values.tolist()
cret = d2.creature.values.tolist()
food = d2.food.values.tolist()
check = np.array(
[
[c in s and f in n for c, f in zip(cret, food)]
for s, n in zip(sump, name)
]
)
# create a new series with the index of `d1` where we dropped na
# then reindex with `df1.index` prior to `assign`
test = pd.Series(check.dot(d2[['creature']].values).ravel(), d1.index)
test = test.reindex(df1.index, fill_value='')
df1.assign(test=test)
consumption name test
0 squirrelate apple apple squirrel
1 monkey likesapple appleisred
2 monkey banana gets banana is tropical monkey
3 badger/getsbanana banana is soft
4 giraffe eats grass lemon is sour
5 badger apple.loves washington apples badger
6 elephant is huge kiwi
7 elephant/eats/ bananas elephant
8 squirrel.digsingrass apples squirrel