我在 Jupyter笔记本上有以下DataFrame,它使用seaborn绘制条形图:
day_index avg_duration trips
0 0 708.852242 114586
1 1 676.702190 120936
2 2 684.572677 118882
3 3 708.925340 117868
4 4 781.767476 108036
5 5 1626.575057 43740
6 6 1729.155673 37508
daysOfWeek = ['Monday', 'Tuesday', 'Wednesday', 'Thursday\n', \
'Friday', 'Saturday', 'Sunday']
plt.figure(figsize=(16,10));
sns.set_style('ticks')
ax = sns.barplot(data=dfGroupedAgg, \
x='day_index', \
y='avg_duration', \
hue='trips', \
palette=sns.color_palette("Reds_d", n_colors=7, desat=1))
ax.set_xlabel("Week Days", fontsize=18, alpha=0.8)
ax.set_ylabel("Duration (seconds)", fontsize=18, alpha=0.8)
ax.set_title("Week's average Trip Duration", fontsize=24)
ax.set_xticklabels(daysOfWeek, fontsize=16)
ax.legend(fontsize=15)
sns.despine()
plt.show()
可以看出,条形与x_ticklabels不匹配,非常薄
如果我删除了hue='trips'
部分,这已经解决了,这是一个已知的seaborn问题。
虽然显示可视化中的行程量非常重要,但是:是否可以通过seaborn(可能直接使用matplotlib)来添加色调属性?
答案 0 :(得分:2)
我认为在这种情况下您不需要指定hue
参数:
In [136]: ax = sns.barplot(data=dfGroupedAgg, \
...: x='day_index', \
...: y='avg_duration', \
...: palette=sns.color_palette("Reds_d", n_colors=7, desat=1))
...:
您可以添加旅行量作为注释:
def autolabel(rects, labels=None, height_factor=1.05):
for i, rect in enumerate(rects):
height = rect.get_height()
if labels is not None:
try:
label = labels[i]
except (TypeError, KeyError):
label = ' '
else:
label = '%d' % int(height)
ax.text(rect.get_x() + rect.get_width()/2., height_factor*height,
'{}'.format(label),
ha='center', va='bottom')
autolabel(ax.patches, labels=df.trips, height_factor=1.02)
答案 1 :(得分:2)
hue
参数可能只对图中引入新维度有意义,而不是在同一维度上显示另一个数量。
最好在没有hue
参数的情况下绘制条形图(实际上将其称为色调是非常误导的),并根据"trips"
列中的值简单地着色条形图。
此问题也显示在此问题:Seaborn Barplot - Displaying Values。
这里的代码如下:
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
di = np.arange(0,7)
avg = np.array([708.852242,676.702190,684.572677,708.925340,781.767476,
1626.575057,1729.155673])
trips = np.array([114586,120936,118882,117868,108036,43740,37508])
df = pd.DataFrame(np.c_[di, avg, trips], columns=["day_index","avg_duration", "trips"])
daysOfWeek = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', \
'Friday', 'Saturday', 'Sunday']
plt.figure(figsize=(10,7));
sns.set_style('ticks')
v = df.trips.values
colors=plt.cm.viridis((v-v.min())/(v.max()-v.min()))
ax = sns.barplot(data=df, x='day_index', y='avg_duration', palette=colors)
for index, row in df.iterrows():
ax.text(row.day_index,row.avg_duration, row.trips, color='black', ha="center")
ax.set_xlabel("Week Days", fontsize=16, alpha=0.8)
ax.set_ylabel("Duration (seconds)", fontsize=16, alpha=0.8)
ax.set_title("Week's average Trip Duration", fontsize=18)
ax.set_xticklabels(daysOfWeek, fontsize=14)
ax.legend(fontsize=15)
sns.despine()
plt.show()
答案 2 :(得分:0)
hue
。如前所述,使用此参数时,条形图不会居中,因为它们是根据色相级别数放置的,在这种情况下有7个级别。palette
参数而不是hue
,将条形图直接放在刻度上。'trips'
与颜色“手动”关联并创建图例。
patches
使用Patch
创建图例中的每个项目。 (例如与颜色和名称相关联的矩形)。import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.patches import Patch
# plt styling parameters
plt.style.use('seaborn')
plt.rcParams['figure.figsize'] = (16.0, 10.0)
plt.rcParams["patch.force_edgecolor"] = True
daysOfWeek = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
# specify the colors
colors = sns.color_palette('Reds_d', n_colors=len(df))
# create the plot
plt.figure(figsize=(16,10))
p = sns.barplot(data=df, x='day_index', y='avg_duration', palette=colors)
# plot cosmetics
p.set_xlabel("Week Days", fontsize=18, alpha=0.8)
p.set_ylabel("Duration (seconds)", fontsize=18, alpha=0.8)
p.set_title("Week's average Trip Duration", fontsize=24)
p.set_xticklabels(daysOfWeek, fontsize=16)
sns.despine()
# setup the legend
# map names to colors
cmap = dict(zip(df.trips, colors))
# create the rectangles for the legend
patches = [Patch(color=v, label=k) for k, v in cmap.items()]
# add the legend
plt.legend(title='Number of Trips', handles=patches, bbox_to_anchor=(1.04, 0.5), loc='center left', borderaxespad=0, fontsize=15)
答案 3 :(得分:0)
这是解决方案
ax = sns.barplot(data=df, \
x='day_index', \
y='avg_duration', \
hue='trips', \
dodge=False, \
palette=sns.color_palette("Reds_d", n_colors=7, desat=1))