我发布了an earlier version of this yesterday,但我似乎无法将此版本添加到该帖子中,因为有人似乎关闭了该帖子进行编辑,所以这是新版本中的新版本。
我在下面的脚本中执行以下操作:
1.)在S形数据上绘制最佳拟合曲线
2.)根据x和y的新的最大和最小坐标重新调整数据大小
3.)为调整大小的数据计算并绘制新的最佳拟合曲线。
步骤1和2似乎工作正常,但步骤3没有。如果您运行该脚本,您将看到它为重新调整大小的数据绘制了完全无效的曲线。
任何人都可以告诉我如何修改下面的代码,以便为重新调整大小的数据创建和绘制真正最合适的S形曲线吗? 这需要是在可能的最大值和最小值的范围内重新调整大小时可重现。
我似乎能够将问题跟踪到New_p,后者在以下代码行中定义:
New_p, New_cov, New_infodict, New_mesg, New_ier = scipy.optimize.leastsq(
residuals,New_p_guess,args=(NewX,NewY),full_output=1,warning=True)
但我无法弄清楚如何更深入地解决这个问题。我认为这个问题可能与全局变量和局部变量之间的差异有关,但也许是其他变量。
以下是我的完整代码的当前草稿:
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize
def GetMinRR(age):
MaxHR = 208-(0.7*age)
MinRR = (60/MaxHR)*1000
return MinRR
def sigmoid(p,x):
x0,y0,c,k=p
y = c / (1 + np.exp(-k*(x-x0))) + y0
return y
def residuals(p,x,y):
return y - sigmoid(p,x)
def resize(x,y,xmin=0.0,xmax=1.0,ymin=0.0,ymax=1.0):
# Create local variables
NewX = [t for t in x]
NewY = [t for t in y]
# If the mins are greater than the maxs, then flip them.
if xmin>xmax: xmin,xmax=xmax,xmin
if ymin>ymax: ymin,ymax=ymax,ymin
#----------------------------------------------------------------------------------------------
# The rest of the code below re-calculates all the values in x and then in y with these steps:
# 1.) Subtract the actual minimum of the input x-vector from each value of x
# 2.) Multiply each resulting value of x by the result of dividing the difference
# between the new xmin and xmax by the actual maximum of the input x-vector
# 3.) Add the new minimum to each value of x
# Note: I wrote in x-notation, but the identical process is also repeated for y
#----------------------------------------------------------------------------------------------
# Subtracts right operand from the left operand and assigns the result to the left operand.
# Note: c -= a is equivalent to c = c - a
NewX -= x.min()
# Multiplies right operand with the left operand and assigns the result to the left operand.
# Note: c *= a is equivalent to c = c * a
NewX *= (xmax-xmin)/NewX.max()
# Adds right operand to the left operand and assigns the result to the left operand.
# Note: c += a is equivalent to c = c + a
NewX += xmin
# Subtracts right operand from the left operand and assigns the result to the left operand.
# Note: c -= a is equivalent to c = c - a
NewY -= y.min()
# Multiplies right operand with the left operand and assigns the result to the left operand.
# Note: c *= a is equivalent to c = c * a
NewY *= (ymax-ymin)/NewY.max()
# Adds right operand to the left operand and assigns the result to the left operand.
# Note: c += a is equivalent to c = c + a
NewY += ymin
return (NewX,NewY)
# Declare raw data for use in creating logistic regression equation
x = np.array([821,576,473,377,326],dtype='float')
y = np.array([255,235,208,166,157],dtype='float')
# Call resize() function to re-calculate coordinates that will be used for equation
MinRR=GetMinRR(50)
MaxRR=1200
minLVET=(y[4]/x[4])*MinRR
maxLVET=(y[0]/x[0])*MaxRR
#x,y=resize(x,y,xmin=0.3, ymin=0.3)
NewX,NewY=resize(x,y,xmin=MinRR,xmax=MaxRR,ymin=minLVET,ymax=maxLVET)
print 'x is: ',x
print 'y is: ',y
print 'NewX is: ',NewX
print 'NewY is: ',NewY
# p_guess is the starting estimate for the minimization
p_guess=(np.median(x),np.median(y),1.0,1.0)
New_p_guess=(np.median(NewX),np.median(NewY),1.0,1.0)
# Calls the leastsq() function, which calls the residuals function with an initial
# guess for the parameters and with the x and y vectors. The full_output means that
# the function returns all optional outputs. Note that the residuals function also
# calls the sigmoid function. This will return the parameters p that minimize the
# least squares error of the sigmoid function with respect to the original x and y
# coordinate vectors that are sent to it.
p, cov, infodict, mesg, ier = scipy.optimize.leastsq(
residuals,p_guess,args=(x,y),full_output=1,warning=True)
New_p, New_cov, New_infodict, New_mesg, New_ier = scipy.optimize.leastsq(
residuals,New_p_guess,args=(NewX,NewY),full_output=1,warning=True)
# Define the optimal values for each element of p that were returned by the leastsq() function.
x0,y0,c,k=p
print('''Reference data:\
x0 = {x0}
y0 = {y0}
c = {c}
k = {k}
'''.format(x0=x0,y0=y0,c=c,k=k))
New_x0,New_y0,New_c,New_k=New_p
print('''New data:\
New_x0 = {New_x0}
New_y0 = {New_y0}
New_c = {New_c}
New_k = {New_k}
'''.format(New_x0=New_x0,New_y0=New_y0,New_c=New_c,New_k=New_k))
# Create a numpy array of x-values
xp = np.linspace(x.min(), x.max(), x.max()-x.min())
New_xp = np.linspace(NewX.min(), NewX.max(), NewX.max()-NewX.min())
# Return a vector pxp containing all the y values corresponding with the x-values in xp
pxp=sigmoid(p,xp)
New_pxp=sigmoid(New_p,New_xp)
# Plot the results
plt.plot(x, y, '>', xp, pxp, 'g-')
plt.plot(NewX, NewY, '^',New_xp, New_pxp, 'r-')
plt.xlabel('x')
plt.ylabel('y',rotation='horizontal')
plt.grid(True)
plt.show()
答案 0 :(得分:2)
试试这个:
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize
def GetMinRR(age):
MaxHR = 208-(0.7*age)
MinRR = (60/MaxHR)*1000
return MinRR
def sigmoid(p,x):
x0,y0,c,k=p
y = c / (1 + np.exp(-k*(x-x0))) + y0
return y
def residuals(p,x,y):
return y - sigmoid(p,x)
def resize(arr,lower=0.0,upper=1.0):
# Create local copy
result=arr.copy()
# If the mins are greater than the maxs, then flip them.
if lower>upper: lower,upper=upper,lower
#----------------------------------------------------------------------------------------------
# The rest of the code below re-calculates all the values in x and then in y with these steps:
# 1.) Subtract the actual minimum of the input x-vector from each value of x
# 2.) Multiply each resulting value of x by the result of dividing the difference
# between the new xmin and xmax by the actual maximum of the input x-vector
# 3.) Add the new minimum to each value of x
#----------------------------------------------------------------------------------------------
# Subtracts right operand from the left operand and assigns the result to the left operand.
# Note: c -= a is equivalent to c = c - a
result -= result.min()
# Multiplies right operand with the left operand and assigns the result to the left operand.
# Note: c *= a is equivalent to c = c * a
result *= (upper-lower)/result.max()
# Adds right operand to the left operand and assigns the result to the left operand.
# Note: c += a is equivalent to c = c + a
result += lower
return result
# Declare raw data for use in creating logistic regression equation
x = np.array([821,576,473,377,326],dtype='float')
y = np.array([255,235,208,166,157],dtype='float')
# Call resize() function to re-calculate coordinates that will be used for equation
MinRR=GetMinRR(50)
MaxRR=1200
# x[-1] returns the last value in x
minLVET=(y[-1]/x[-1])*MinRR
maxLVET=(y[0]/x[0])*MaxRR
print(MinRR, MaxRR)
#x,y=resize(x,y,xmin=0.3, ymin=0.3)
NewX=resize(x,lower=MinRR,upper=MaxRR)
NewY=resize(y,lower=minLVET,upper=maxLVET)
print 'x is: ',x
print 'y is: ',y
print 'NewX is: ',NewX
print 'NewY is: ',NewY
# p_guess is the starting estimate for the minimization
p_guess=(np.median(x),np.min(y),np.max(y),0.01)
New_p_guess=(np.median(NewX),np.min(NewY),np.max(NewY),0.01)
# Calls the leastsq() function, which calls the residuals function with an initial
# guess for the parameters and with the x and y vectors. The full_output means that
# the function returns all optional outputs. Note that the residuals function also
# calls the sigmoid function. This will return the parameters p that minimize the
# least squares error of the sigmoid function with respect to the original x and y
# coordinate vectors that are sent to it.
p, cov, infodict, mesg, ier = scipy.optimize.leastsq(
residuals,p_guess,args=(x,y),full_output=1,warning=True)
New_p, New_cov, New_infodict, New_mesg, New_ier = scipy.optimize.leastsq(
residuals,New_p_guess,args=(NewX,NewY),full_output=1,warning=True)
# Define the optimal values for each element of p that were returned by the leastsq() function.
x0,y0,c,k=p
print('''Reference data:\
x0 = {x0}
y0 = {y0}
c = {c}
k = {k}
'''.format(x0=x0,y0=y0,c=c,k=k))
New_x0,New_y0,New_c,New_k=New_p
print('''New data:\
New_x0 = {New_x0}
New_y0 = {New_y0}
New_c = {New_c}
New_k = {New_k}
'''.format(New_x0=New_x0,New_y0=New_y0,New_c=New_c,New_k=New_k))
# Create a numpy array of x-values
xp = np.linspace(x.min(), x.max(), x.max()-x.min())
New_xp = np.linspace(NewX.min(), NewX.max(), NewX.max()-NewX.min())
# Return a vector pxp containing all the y values corresponding with the x-values in xp
pxp=sigmoid(p,xp)
New_pxp=sigmoid(New_p,New_xp)
# Plot the results
plt.plot(x, y, '>', xp, pxp, 'g-')
plt.plot(NewX, NewY, '^',New_xp, New_pxp, 'r-')
plt.xlabel('x')
plt.ylabel('y',rotation='horizontal')
plt.grid(True)
plt.show()
您的其他相关问题尚未结束,您似乎已注册了两次,并且stackoverflow不允许您编辑其他问题,因为它无法识别this user与this user相同
我在上面的代码中所做的主要是改变New_p_guess
。
为初始猜测找到正确的值是一种艺术。如果它可以通过算法完成,scipy不会要求你这样做。一点分析可以帮助您,也可以为您的数据提供“感觉”。事先知道解决方案应该大致是什么样的,因此在问题的背景下哪些值是合理的也有帮助。 (这只是一个很长的路要说我猜我选择k = 0.01的方式。)