在我的一个项目中,我在使用CUB时看到了一些不正确的结果 DeviceReduce :: ReduceByKey。但是,使用与thrust :: reduce_by_key相同的输入/输出会产生预期的结果。
#include "cub/cub.cuh"
#include <vector>
#include <iostream>
#include <cuda.h>
struct AddFunctor {
__host__ __device__ __forceinline__
float operator()(const float & a, const float & b) const {
return a + b;
}
} reduction_op;
int main() {
int n = 7680;
std::vector < uint64_t > keys_h(n);
for (int i = 0; i < 4000; i++) keys_h[i] = 1;
for (int i = 4000; i < 5000; i++) keys_h[i] = 2;
for (int i = 5000; i < 7680; i++) keys_h[i] = 3;
uint64_t * keys;
cudaMalloc(&keys, sizeof(uint64_t) * n);
cudaMemcpy(keys, &keys_h[0], sizeof(uint64_t) * n, cudaMemcpyDefault);
uint64_t * unique_keys;
cudaMalloc(&unique_keys, sizeof(uint64_t) * n);
std::vector < float > values_h(n);
for (int i = 0; i < n; i++) values_h[i] = 1.0;
float * values;
cudaMalloc(&values, sizeof(float) * n);
cudaMemcpy(values, &values_h[0], sizeof(float) * n, cudaMemcpyDefault);
float * aggregates;
cudaMalloc(&aggregates, sizeof(float) * n);
int * remaining;
cudaMalloc(&remaining, sizeof(int));
size_t size = 0;
void * buffer = NULL;
cub::DeviceReduce::ReduceByKey(
buffer,
size,
keys,
unique_keys,
values,
aggregates,
remaining,
reduction_op,
n);
cudaMalloc(&buffer, sizeof(char) * size);
cub::DeviceReduce::ReduceByKey(
buffer,
size,
keys,
unique_keys,
values,
aggregates,
remaining,
reduction_op,
n);
int remaining_h;
cudaMemcpy(&remaining_h, remaining, sizeof(int), cudaMemcpyDefault);
std::vector < float > aggregates_h(remaining_h);
cudaMemcpy(&aggregates_h[0], aggregates, sizeof(float) * remaining_h, cudaMemcpyDefault);
for (int i = 0; i < remaining_h; i++) {
std::cout << i << ", " << aggregates_h[i] << std::endl;
}
cudaFree(buffer);
cudaFree(keys);
cudaFree(unique_keys);
cudaFree(values);
cudaFree(aggregates);
cudaFree(remaining);
}
当我包含&#34; -gencode arch = compute_35时,代码= sm_35&#34; (对于Kepler GTX Titan),它会产生错误的结果,但是当我完全抛弃这些标志时,它就会起作用。
$ nvcc cub_test.cu
$ ./a.out
0, 4000
1, 1000
2, 2680
$ nvcc cub_test.cu -gencode arch=compute_35,code=sm_35
$ ./a.out
0, 4000
1, 1000
2, 768
我使用了一些其他CUB调用没有问题,只是这个是行为不端。我也尝试在GTX 1080 Ti上运行此代码 compute_61,sm_61)并看到相同的行为。
是否省略了这些编译器标志的正确解决方案?
试用一台机器:
和另一个:
答案 0 :(得分:0)
听起来你应该在CUB repository issues page提交错误报告。
编辑:我可以重现此问题:
<style>
.x-item-disabled, .x-item-disabled * {
pointer-events:all;
}
</style>
相关信息: