在以下代码中,条形图的颜色会随着阈值的变化而变化。我没有使用阈值并在代码中绘制水平线,而是想在OnMouseMove函数中使用y参数,以便用户可以更改" threshold"的位置。然后,我想要在更改y时更新颜色。
我认为我需要的是#34;观察者模式"或者使用动画工具但不确定如何实现它的技巧。我很欣赏有关如何做到这一点的任何见解。感谢
%matplotlib notebook
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.colors as mcol
import matplotlib.cm as cm
import matplotlib.pyplot as plt
np.random.seed(12345)
df = pd.DataFrame([np.random.normal(335,1500,300),
np.random.normal(410,900,300),
np.random.normal(410,1200,300),
np.random.normal(480,550,300)],
index=[1,2,3,4])
fig, ax = plt.subplots()
plt.show()
bars = plt.bar(range(df.shape[0]), df.mean(axis = 1), color = 'lightslategrey')
fig = plt.gcf()
threshold=420
plt.axhline(y = threshold, color = 'grey', alpha = 0.5)
cm1 = mcol.LinearSegmentedColormap.from_list("Test",["b", "white", "purple"])
cpick = cm.ScalarMappable(cmap=cm1)
cpick.set_array([])
percentages = []
for bar in bars:
percentage = (bar.get_height()-threshold)/bar.get_height()
if percentage>1: percentage = 1
if percentage<0: percentage=0
percentages.append(percentage)
cpick.to_rgba(percentages)
bars = plt.bar(range(df.shape[0]), df.mean(axis = 1), color = cpick.to_rgba(percentages))
plt.colorbar(cpick, orientation='horizontal')
def onMouseMove(event):
ax.lines = [ax.lines[0]]
plt.axhline(y=event.ydata, color="k")
fig.canvas.mpl_connect('motion_notify_event', onMouseMove)
plt.xticks(range(df.shape[0]), df.index, alpha = 0.8)
答案 0 :(得分:5)
首先你应该使用一个条形图和一个axhline(使用更多将使一切变得混乱)。您可以通过
设置条形图的颜色for bar in bars:
bar.set_color(..)
您可以通过line.set_ydata(position)
更新axhline的位置。
现在,对于每个鼠标移动事件,您需要更新axhline的位置,计算百分比并将新颜色应用于条形。所以这些事情应该在一个函数中完成,每次触发鼠标移动事件时都会调用它。应用这些设置后,需要绘制画布以使其可见。
这是一个完整的代码。
import pandas as pd
import numpy as np
import matplotlib.colors as mcol
import matplotlib.cm as cm
import matplotlib.pyplot as plt
np.random.seed(12345)
df = pd.DataFrame([np.random.normal(335,1500,300),
np.random.normal(410,900,300),
np.random.normal(410,1200,300),
np.random.normal(480,550,300)],
index=[1,2,3,4])
fig, ax = plt.subplots()
threshold=420.
bars = plt.bar(range(df.shape[0]), df.mean(axis = 1), color = 'lightslategrey')
axline = plt.axhline(y = threshold, color = 'grey', alpha = 0.5)
cm1 = mcol.LinearSegmentedColormap.from_list("Test",["b", "white", "purple"])
cpick = cm.ScalarMappable(cmap=cm1)
cpick.set_array([])
plt.colorbar(cpick, orientation='horizontal')
def percentages(threshold):
percentages = []
for bar in bars:
percentage = (bar.get_height()-threshold)/bar.get_height()
if percentage>1: percentage = 1
if percentage<0: percentage=0
percentages.append(percentage)
return percentages
def update(threshold):
axline.set_ydata(threshold)
perc = percentages(threshold)
for bar, p in zip(bars, perc):
bar.set_color(cpick.to_rgba(p))
# update once before showing
update(threshold)
def onMouseMove(event):
if event.inaxes == ax:
update(event.ydata)
fig.canvas.draw_idle()
fig.canvas.mpl_connect('motion_notify_event', onMouseMove)
plt.xticks(range(df.shape[0]), df.index, alpha = 0.8)
plt.show()