当我在数据框上运行show方法时出现以下错误。
Py4JJavaError: An error occurred while calling o14904.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 23450.0 failed 1 times, most recent failure: Lost task 0.0 in stage 23450.0 (TID 120652, localhost): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/Users/i854319/spark2/python/lib/pyspark.zip/pyspark/worker.py", line 172, in main
process()
File "/Users/i854319/spark2/python/lib/pyspark.zip/pyspark/worker.py", line 167, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/Users/i854319/spark2/python/lib/pyspark.zip/pyspark/serializers.py", line 263, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "<ipython-input-8-b76896bc4e43>", line 320, in <lambda>
UnicodeEncodeError: 'ascii' codec can't encode characters in position 3-5: ordinal not in range(128)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.next(PythonRDD.scala:156)
当我只获取12行时,它不会抛出错误。
jpsa_rf.features_df.show(12)
+------------+--------------------+
|Feature_name| Importance_value|
+------------+--------------------+
| competitive|0.019380017988201638|
| new|0.012416277407924172|
|self-reliant|0.009044388916918005|
| related|0.008968947484358822|
| retail|0.008729510712416655|
| sales,|0.007680271475590303|
| work|0.007548541044789985|
| performance|0.007209008630295571|
| superior|0.007065626808393139|
| license|0.006436001036918034|
| industry|0.006416712169788629|
| record|0.006227581067732823|
+------------+--------------------+
only showing top 12 rows
但是当我这样做时。显示(15)我得到了错误。
我创建了这个数据框,如下所示:它基本上是一个特征数据框,其重要值来自随机森林模型
vocab=np.array(self.cvModel.bestModel.stages[3].vocabulary)
if est_name=="rf":
feature_importance=self.cvModel.bestModel.stages[5].featureImportances.toArray()
argsort_feature_indices=feature_importance.argsort()[::-1]
elif est_name=="blr":
feature_importance=self.cvModel.bestModel.stages[5].coefficients.toArray()
argsort_feature_indices=abs(feature_importance).argsort()[::-1]
# Sort the features importance array in descending order and get the indices
feature_names=vocab[argsort_feature_indices]
self.features_df=sc.parallelize(zip(feature_names,feature_importance[argsort_feature_indices])).\
map(lambda x: (str(x[0]),float(x[1]))).toDF(["Feature_name","Importance_value"])