我使用以下代码使用tensorflow创建自定义初始。
import tensorflow as tf
import sys
interesting_class = sys.argv[1:]
print("Interesting class: ", interesting_class)
# Read in the image_data
from os import listdir
from shutil import copyfile
from os.path import isfile, join
varPath = 'toScan/'
destDir = "scanned/"
imgFiles = [f for f in listdir(varPath) if isfile(join(varPath, f))]
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("/tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("/tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
file_count = len(imgFiles)
i = 0
for imageFile in imgFiles:
print("File ", i, " of ", file_count)
i = i+1
image_data = tf.gfile.FastGFile(varPath+"/"+imageFile, 'rb').read()
print (varPath+"/"+imageFile)
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
firstElt = top_k[0];
newFileName = label_lines[firstElt] +"--"+ str(predictions[0][firstElt])[2:7]+".jpg"
print(interesting_class, label_lines[firstElt])
if interesting_class == label_lines[firstElt]:
print(newFileName)
copyfile(varPath+"/"+imageFile, destDir+"/"+newFileName)
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print (node_id)
print('%s (score = %.5f)' % (human_string, score))
执行此操作时出现以下错误
('有趣的类:',[])Traceback(最近一次调用最后一次):文件 “/Users/Downloads/imagenet_train-master/label_dir.py”,第22行,在 在tf.gfile.GFile(“/ tf_files / retrained_labels.txt”)]文件“/Users/tensorflow/lib/python2.7/site-packages/tensorflow/python/lib/io/file_io.py”, 第156行,接下来 retval = self.readline()文件“/Users/tensorflow/lib/python2.7/site-packages/tensorflow/python/lib/io/file_io.py”, 第123行,在readline中 self._preread_check()文件“/Users/tensorflow/lib/python2.7/site-packages/tensorflow/python/lib/io/file_io.py”, 第73行,在_preread_check中 compat.as_bytes(self。 name),1024 * 512,status)文件“/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/contextlib.py”, 第24行,在__exit self.gen.next()文件“/Users/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/errors_impl.py”, 第466行,在raise_exception_on_not_ok_status中 pywrap_tensorflow.TF_GetCode(status))tensorflow.python.framework.errors_impl.NotFoundError: /tf_files/retrained_labels.txt
为什么我收到此错误?
以下是我的文件夹结构:
tensorflow_try
|- new_pics
| |- class1
| |- class2
| |- ...
|- toScan
|- scanned
答案 0 :(得分:8)
问题来自这一行:
label_lines = [line.rstrip() for line
in tf.gfile.GFile("/tf_files/retrained_labels.txt")]
请检查:
tf_files
- 您可以运行ls /tf_files
来检查此内容; /tf_files/retrained_labels.txt
具有读/写权限,则