Pandas基于系列成员资格创建两个数据帧

时间:2017-03-20 11:19:13

标签: python-3.x pandas dataframe merge t-test

如果这是一个重复,我是一个新手并道歉,我似乎无法准确回答所以我认为不是。

我有两个数据帧,第一个有本地化的经济数据(df1):

(index)  (index)     2000     2010  Diff   
State    Region    
NY       NYC         1000     1100   100
NY       Upstate      200      270    70
NY       Long_Island 1700     1800   100 
IL       Chicago      300      500   200
IL       South         50       35    15
IL       Suburbs      800      650  -150

第二个包含州和地区列表,(df2):

index   State   Region
0        NY      NYC
1        NY      Long_Island
2        IL      Chicago

最终,我要做的是在t-test中的州与地区之间的Diff列与df2中的所有其他列之间运行df1不包含在df2中。但是,我还没有设法分组,所以我无法进行测试。

我的最新尝试(很多)看起来像这样:

df1['Region', 'State'].isin(df2['Region', 'State'])

我也试过了pd.merge,但似乎无法让它发挥作用。我认为这是因为多级索引,但我仍然不知道如何获得不在df2中的州/区域。

先谢谢你的帮助,

1 个答案:

答案 0 :(得分:1)

您似乎需要MultiIndexes difference,然后按loc选择:

print (df1.index)
MultiIndex(levels=[['IL', 'NY'], ['Chicago', 'Long_Island', 
                                  'NYC', 'South', 'Suburbs', 'Upstate']],
           labels=[[1, 1, 1, 0, 0, 0], [2, 5, 1, 0, 3, 4]],
           names=['State', 'Region'])

print (df2.index)
Int64Index([0, 1, 2], dtype='int64', name='index')

print (df1.index.names)
['State', 'Region']
#create index from both columns
df2 =  df2.set_index(df1.index.names)
what is same as
#df2 = df2.set_index(['State','Region'])

mux = df1.index.difference(df2.index)
print (mux)
MultiIndex(levels=[['IL', 'NY'], ['South', 'Suburbs', 'Upstate']],
           labels=[[0, 0, 1], [0, 1, 2]],
           names=['State', 'Region'],
           sortorder=0)

print (df1.loc[mux])
               2000  2010  Diff
State Region                   
IL    South      50    35    15
      Suburbs   800   650  -150
NY    Upstate   200   270    70

所有在一起:

df2 =  df2.set_index(df1.index.names)
df = df1.loc[df1.index.difference(df2.index)]
print (df)