with tf.variable_scope('forward'):
cell_img_fwd = tf.nn.rnn_cell.GRUCell(hidden_state_size, hidden_state_size)
img_init_state_fwd = rnn_img_mapped[:, 0, :]
img_init_state_fwd = tf.multiply(
img_init_state_fwd,
tf.zeros([batch_size, hidden_state_size]))
rnn_outputs2, final_state2 = tf.nn.dynamic_rnn(
cell_img_fwd,
rnn_img_mapped,
initial_state=img_init_state_fwd,
dtype=tf.float32)
这是我用于输入尺寸100x196x50的GRU的代码,它应该沿第二维(即196)解压缩。 hidden_state_size
为50,batch_size
为100.但是我收到以下错误:
ValueError: The two structures don't have the same number of elements.
First structure: Tensor("backward/Tile:0", shape=(100, 50), dtype=float32),
second structure:
(<tf.Tensor 'backward/bwd_states/while/GRUCell/add:0' shape=(100, 50) dtype=float32>,
<tf.Tensor 'backward/bwd_states/while/GRUCell/add:0' shape=(100, 50) dtype=float32>).
有任何线索如何解决这个问题?
答案 0 :(得分:16)
你好我遇到了同样的问题,我试着这样做:
highest = tf.map_fn(lambda x : (-x, x), indices)
这给了我一个类似的错误信息:
ValueError: The two structures don't have the same number of elements.
First structure (1 elements): <dtype: 'int32'>
Second structure (2 elements): (<tf.Tensor 'map/while/Neg:0' shape=() dtype=int32>, <tf.Tensor 'map/while/TensorArrayReadV3:0' shape=() dtype=int32>)
我通过明确表示dtypes来解决这个问题:
highest = tf.map_fn(lambda x : (-x, x), indices, dtype=(tf.int32, tf.int32))