如何并排绘制图像和图形?

时间:2017-03-11 02:30:26

标签: python matplotlib histogram fig

我正在尝试使用Python中的plt.fig()以相等的比例并排绘制各自的直方图图像,但我没有得到所需的输出。相反,我将直方图重叠到图像上。

知道为什么会一直这样吗?

import pylab as plt
import matplotlib.image as mpimg
import numpy as np


img = np.uint8(mpimg.imread('motherT.png'))
im2 = np.uint8(mpimg.imread('waldo.png'))
# convert to grayscale
# do for individual channels R, G, B, A for nongrayscale images

img = np.uint8((0.2126* img[:,:,0]) + \
        np.uint8(0.7152 * img[:,:,1]) +\
             np.uint8(0.0722 * img[:,:,2]))

im2 = np.uint8((0.2126* img[:,:,0]) + \
        np.uint8(0.7152 * img[:,:,1]) +\
             np.uint8(0.0722 * img[:,:,2]))

# show old and new image
# show original image
fig = plt.figure()

plt.imshow(img)
plt.title(' image 1')
plt.set_cmap('gray')

# show original image
fig.add_subplot(221)
plt.title('histogram ')
plt.hist(img,10)
plt.show()

fig = plt.figure()
plt.imshow(im2)
plt.title(' image 2')
plt.set_cmap('gray')

fig.add_subplot(221)
plt.title('histogram')
plt.hist(im2,10)

plt.show()

1 个答案:

答案 0 :(得分:3)

您似乎是为两张图片执行此操作?子图将是你最好的选择。下面介绍如何将它们用于2 x 2效果:

import pylab as plt
import matplotlib.image as mpimg
import numpy as np


img = np.uint8(mpimg.imread('motherT.png'))
im2 = np.uint8(mpimg.imread('waldo.png'))

# convert to grayscale
# do for individual channels R, G, B, A for nongrayscale images

img = np.uint8((0.2126 * img[:,:,0]) + np.uint8(0.7152 * img[:,:,1]) + np.uint8(0.0722 * img[:,:,2]))
im2 = np.uint8((0.2126 * im2[:,:,0]) + np.uint8(0.7152 * im2[:,:,1]) + np.uint8(0.0722 * im2[:,:,2]))

# show old and new image
# show original image
fig = plt.figure()

# show original image
fig.add_subplot(221)
plt.title(' image 1')
plt.set_cmap('gray')
plt.imshow(img)

fig.add_subplot(222)
plt.title('histogram ')
plt.hist(img,10)

fig.add_subplot(223)
plt.title(' image 2')
plt.set_cmap('gray')
plt.imshow(im2)

fig.add_subplot(224)
plt.title('histogram')
plt.hist(im2,10)

plt.show() 

这会给你类似的东西:

matplotlib screenshot of 2x2 usage

另请注意,在原始代码中,im2的灰度计算使用的是img而不是im2的图像数据。

您可能希望为每张图片关闭轴,为此,您可以在每个plt.axis('off')之前添加plt.imshow()

without axis