我将一堆列转换为虚拟变量。我想从数据框中删除原始分类变量。我正在努力弄清楚如何在闪闪发光中做到这一点。它在dplyr中很简单,但dplyr功能并不适用于sparklyr。
例如:
首先创建一个spark数据帧:
###create dummy data to figure out how model matrix formulas work in sparklyr
v1 <- sample( LETTERS[1:4], 50000, replace=TRUE, prob=c(0.1, 0.2, 0.65, 0.05))
v2 <- sample( LETTERS[5:6], 50000, replace=TRUE, prob=c(0.7,0.3))
v3 <- sample( LETTERS[7:10], 50000, replace=TRUE, prob=c(0.3, 0.2, 0.4, 0.1))
v4 <- sample( LETTERS[11:15], 50000, replace=TRUE, prob=c(0.1, 0.1, 0.3, 0.05,.45))
v5 <- sample( LETTERS[16:17], 50000, replace=TRUE, prob=c(0.4,0.6))
v6 <- sample( LETTERS[18:21], 50000, replace=TRUE, prob=c(0.1, 0.1, 0.65, 0.15))
v7 <- sample( LETTERS[22:26], 50000, replace=TRUE, prob=c(0.1, 0.2, 0.65, 0.03,.02))
v8 <- rnorm(n=50000,mean=.5,sd=.1)
v9 <- rnorm(n=50000,mean=5,sd=3)
v10 <- rnorm(n=50000,mean=3,sd=.5)
response <- rnorm(n=50000,mean=10,sd=2)
dat <- data.frame(v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,response)
write.csv(dat,file='fake_dat.csv',row.names = FALSE)
#push "fake_dat" to the hdfs
library(dplyr)
library(sparklyr)
#configure the spark session and connect
config <- spark_config()
config$`sparklyr.shell.driver-memory` <- "2G" #change depending on the size of the data
config$`sparklyr.shell.executor-memory` <- "2G"
# sc <- spark_connect(master='local', spark_home='/usr/hdp/2.5.0.0-1245/spark',config = config)
# sc
sc <- spark_connect(master='yarn-client', spark_home='/usr/hdp/2.5.0.0-1245/spark',config = config)
sc
#can also set spark_home as '/usr/hdp/current/spark-client'
#read in the data from the hdfs
df <- spark_read_csv(sc,name='fdat',path='hdfs://pnhadoop/user/stc004/fake_dat.csv')
#create spark table
dat <- tbl(sc,'fdat')
现在创建虚拟变量:
for(i in 1:7){
dat <- ml_create_dummy_variables(x=dat,colnames(dat)[i], reference = NULL)
}
我可以使用
简单地删除原始分类变量drop.cols <- colnames(dat)[1:7]
dat1 <-
dat %>%
select(-one_of(drop.cols))
但是,我实际使用的数据有300个分类变量。我需要一种快速的方法来确定哪些列是字符/因子。将这些列转换为虚拟变量后,我可以删除原始的分类变量。我尝试过以下方法:
test <-
dat %>%
select_if(is.character)
然后我收到以下错误:
Error: Selection with predicate currently require local sources
我也尝试过:
cls <- sapply(dat, class)
cls
但我明白了:
> cls
src ops
[1,] "src_spark" "op_base_remote"
[2,] "src_sql" "op_base"
[3,] "src" "op"
关于如何做到这一点的任何想法?
答案 0 :(得分:2)
将此称为“最佳”将是一个延伸,但您可以尝试这样的事情(purr
用于方便):
columns_for_type <- function(sc, name, type="StringType") {
spark_session(sc) %>%
invoke("table", name) %>%
# Get (name, type) tuples
invoke("dtypes") %>%
# Filter by type
purrr::keep(function(x) invoke(x, "_2") == type) %>%
purrr::map(function(x) invoke(x, "_1"))
}
可以按如下方式使用:
library(sparklyr)
library(dplyr)
sc <- spark_connect(master = "local[*]")
iris_tbl <- copy_to(sc, iris, name="iris", overwrite=TRUE)
columns_for_type(sc, "iris", "StringType")
[[1]]
[1] "Species"
columns_for_type(sc, "iris", "DoubleType")
[[1]]
[1] "Sepal_Length"
[[2]]
[1] "Sepal_Width"
[[3]]
[1] "Petal_Length"
[[4]]
[1] "Petal_Width"
结果可以传递给select_
:
iris_tbl %>% select_(.dots=columns_for_type(sc, "iris", "StringType"))
Source: query [150 x 1]
Database: spark connection master=local[8] app=sparklyr local=TRUE
Species
<chr>
1 setosa
2 setosa
3 setosa
4 setosa
5 setosa
6 setosa
7 setosa
8 setosa
9 setosa
10 setosa
# ... with 140 more rows
您可以将一行作为data.frame
:
iris_tbl %>% head(n=1) %>% as.data.frame %>% lapply(class)
但它需要额外的Spark动作。