我正在将Google Cloud Vision API集成到我的应用中。 我注意到文本检测,标签检测在真实设备上运行速度比在Android模拟器上慢6倍。
问题的原因是在实际设备中互联网速度不低。因为另一个也发出http请求的应用程序部分为真实设备和模拟器提供了一个性能。
此问题可在Google官方Cloud Vision Android Sample
重现在2个不同的真实设备和2个仿真器上测试。
任何想法为什么会发生?
官方样本代码:
private void callCloudVision(final Bitmap bitmap) throws IOException {
// Switch text to loading
mImageDetails.setText(R.string.loading_message);
// Do the real work in an async task, because we need to use the network anyway
new AsyncTask<Object, Void, String>() {
@Override
protected String doInBackground(Object... params) {
try {
HttpTransport httpTransport = AndroidHttp.newCompatibleTransport();
JsonFactory jsonFactory = GsonFactory.getDefaultInstance();
Vision.Builder builder = new Vision.Builder(httpTransport, jsonFactory, null);
builder.setVisionRequestInitializer(new
VisionRequestInitializer(CLOUD_VISION_API_KEY));
Vision vision = builder.build();
BatchAnnotateImagesRequest batchAnnotateImagesRequest =
new BatchAnnotateImagesRequest();
batchAnnotateImagesRequest.setRequests(new ArrayList<AnnotateImageRequest>() {{
AnnotateImageRequest annotateImageRequest = new AnnotateImageRequest();
//https://cloud.google.com/vision/docs/languages
ImageContext imageContext = new ImageContext();
List<String> languages = new ArrayList<>();
languages.add("pl");
imageContext.setLanguageHints(languages);
annotateImageRequest.setImageContext(imageContext);
// Add the image
Image base64EncodedImage = new Image();
// Convert the bitmap to a JPEG
// Just in case it's a format that Android understands but Cloud Vision
ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
bitmap.compress(Bitmap.CompressFormat.JPEG, 90, byteArrayOutputStream);
byte[] imageBytes = byteArrayOutputStream.toByteArray();
// Base64 encode the JPEG
base64EncodedImage.encodeContent(imageBytes);
annotateImageRequest.setImage(base64EncodedImage);
// add the features we want
annotateImageRequest.setFeatures(new ArrayList<Feature>() {{
Feature labelDetection = new Feature();
labelDetection.setType("LABEL_DETECTION");
labelDetection.setMaxResults(10);
add(labelDetection);
}});
// Add the list of one thing to the request
add(annotateImageRequest);
}});
Vision.Images.Annotate annotateRequest =
vision.images().annotate(batchAnnotateImagesRequest);
// Due to a bug: requests to Vision API containing large images fail when GZipped.
annotateRequest.setDisableGZipContent(true);
Log.d(TAG, "created Cloud Vision request object, sending request");
BatchAnnotateImagesResponse response = annotateRequest.execute();
return convertResponseToString(response);
} catch (GoogleJsonResponseException e) {
Log.d(TAG, "failed to make API request because " + e.getContent());
} catch (IOException e) {
Log.d(TAG, "failed to make API request because of other IOException " +
e.getMessage());
}
return "Cloud Vision API request failed. Check logs for details.";
}
protected void onPostExecute(String result) {
mImageDetails.setText(result);
}
}.execute();
}
3次测试后处理一幅图像的时间结果:
真实设备
48409608471
49837573418
48430621961
模拟器
7725682517个
7967006977个
5478519794个
我用简单的
long startTime = System.nanoTime();
long endTime = System.nanoTime();
long duration = (endTime - startTime);