如何从python groupby中排除NaN / NaT / None,但是包括行?

时间:2017-03-03 18:25:26

标签: python python-2.7 pandas

>> df

    Foo     Bar     Number  Date
0   abc     None    NaN     NaT
1   abcdefg None    NaN     NaT
2   abcd    this    1111222 3/8/2017
3   abcd    that    1233336 3/3/2017
4   abcd    what    1346554 3/3/2017
5   abcde   that    8889995 3/9/2017
6   abcde   this    1849552 3/8/2017
7   abcd    that    7418652 3/3/2017
8   abcdef  this    4865154 3/7/2017


>>  df.groupby(['Foo']).size().reset_index(name='Total')

如果我这样做,行被计为有一个值,它就是这样,我明白了。我不确定如何在Total中包含行,但实际上不计算None / NaN / NaT值?

返回:

    Foo     Total   
0   abc     1
1   abcd    4
2   abcde   2
3   abcdef  1
4   abcdefg 1 

预期结果:

    Foo     Total   
0   abc     0
1   abcd    4
2   abcde   2
3   abcdef  1
4   abcdefg 0

1 个答案:

答案 0 :(得分:1)

您可以先删除空值,然后使用填充值在末尾使用Foo列的唯一值重新索引。

(df.dropna().groupby('Foo')
            .size()
            .reindex(df.Foo.unique(), fill_value=0)
            .reset_index(name='total'))

或者,您可以制作FooCategorical

df.Foo = pd.Categorical(df.Foo)
df.dropna().groupby('Foo').size().reset_index(name='total')

<强>演示

>>> (df.dropna().groupby('Foo')
                .size()
                .reindex(df.Foo.unique(), fill_value=0)
                .reset_index(name='total'))

       Foo  total
0      abc      0
1  abcdefg      0
2     abcd      4
3    abcde      2
4   abcdef      1

############################################################################

>>> df.Foo = pd.Categorical(df.Foo)

>>> df.dropna().groupby('Foo').size().reset_index(name='total')

       Foo  total
0      abc      0
1     abcd      4
2    abcde      2
3   abcdef      1
4  abcdefg      0