我正在尝试将大型CSV文件加载到TensorFlow管道中,其中每行代表一个展平的256 * 256图像。我试图概括TensorFlow CSV文件读取示例,但是我无法将decode_csv函数概括为使我的所有列都适应:
$adphone = (Get-ADUser -Filter "Name -eq '$fullname'" -Properties MobilePhone).MobilePhone
但是我收到了错误
def file_len(fname):
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
# setup text reader
file_length = file_len(filename)
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TextLineReader(skip_header_lines=1)
_, csv_row = reader.read(filename_queue)
# setup CSV decoding
record_defaults = [[0] for i in range(256*256)]
col = tf.decode_csv(csv_row, record_defaults=record_defaults)
features = tf.pack([col[i] for i in range(256*256))
print("loading, " + str(file_length) + " line(s)\n")
with tf.Session() as sess:
tf.initialize_all_variables().run()
# start populating filename queue
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(file_length):
# retrieve a single instance
example, label = sess.run([features, col5])
print(example, label)
coord.request_stop()
coord.join(threads)
print("\ndone loading")
如何概括col1,... colN部分?
答案 0 :(得分:0)
我的愚蠢错误。 tf.pack可以采用list参数,因此不需要将tf.decode_csv的输出分成不同的cols。它可以简单地用
完成col = tf.decode_csv(csv_row, record_defaults=record_defaults)
features = tf.pack(col)