我有从Excel导入的4个数据集,其中包含2013,2014,2015和2016年学校的total_budget。所有数据集都有一个公共列,其中包含每个学校的ID代码(LAESTAB列)。
我想要一个新的数据集,其左边是公共列LAESTAB(4个数据集中的值相同),接下来是total2013,total2014,total2015和total2016(来自不同数据集)的列。
我还希望摆脱其余的数据,包括所有数据集中都没有的学校ID。
我将尝试在一个例子中进一步阐述它:
以下是其中一个Excel数据集的示例:
>>> print cuts2016.head()
LA_codelocal_authority_name UPIN URN LAESTAB \
0 201 City of London 500000 0.0 2013614
1 202 Camden 500005 0.0 2022095
2 202 Camden 500007 0.0 2022219
3 202 Camden 500012 0.0 2022502
4 202 Camden 500014 0.0 2022603
School Name Academy? Phase Provider Type \
0 Sir John Cass's Foundation Primary School No Primary School
1 Carlton Primary School No Primary School
2 Fleet Primary School No Primary School
3 Rhyl Primary School No Primary School
4 Torriano Primary School No Primary School
MFG protection (+ve) or capping/scaling (-ve) total2016 \
0 35000 1659000
1 68000 1956000
2 -10000 1059000
3 97000 2234000
4 0 2284000
2005年的另一个Excel数据集:
print cuts2015.head()
LA_code local_authority_name UPIN URN LAESTAB \
0 201 City of London NaN 100000 2013614
1 202 Camden NaN 100008 2022019
2 202 Camden NaN 100009 2022036
3 202 Camden NaN 100010 2022065
4 202 Camden NaN 100011 2022078
school_name Phase Provider Type \
0 Sir John Cass's Foundation Primary School Primary School
1 Argyle Primary School Primary School
2 Beckford Primary School Primary School
3 Brecknock Primary School Primary School
4 Brookfield Primary School Primary School
Basic Entitlement Total Funding Deprivation Total Funding total_pre_MFG \
0 1,206,000 215,000 1,644,000
1 1,333,000 367,000 2,068,000
2 1,482,000 359,000 2,221,000
3 1,234,000 348,000 1,974,000
4 1,436,000 256,000 2,028,000
MFG protection (+ve) or capping/scaling (-ve) total2015 \
0 0 1644000
1 25,000 2093000
2 0 2221000
3 72,000 2046000
4 -58,000 1970000
我需要的最终结果如下(应显示总计2014和总计2013):
LAESTAB total2016 total2015 etc...\
2013614 1956000 1644000
2022019 1059000 2093000
2022036 2234000 2221000
2022065 2284000 1970000
...
我尝试了'reduce',如下所示,但它返回0行×66列。
dataframe_list = [cuts2013, cuts2014, cuts2015, cuts2016]
df_final = reduce(lambda left,right: pd.merge(left,right,on='LAESTAB'), dataframe_list)
答案 0 :(得分:0)
使用LAESTAB列合并数据框SQL样式,然后根据需要从data_merged
删除列。
import pandas as pd
data_merged = pd.merge(cuts2016,cuts2015,on = "LAESTAB")
有关合并的更多信息,请查看以下链接:
http://chrisalbon.com/python/pandas_join_merge_dataframe.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.merge.html
答案 1 :(得分:0)
实现这一目标的一种方法是使用Mainul Islam指出的合并。在这里,您必须执行3次合并操作才能合并4个数据帧。否则,您可以连接所有4个数据帧并执行groupby操作。
dataframe_list = [cuts2013, cuts2014, cuts2015, cuts2016]
total = pd.concat(dataframe_list)
total = total.groupby('LAESTAB')['total2013', 'total2014', 'total2015','total2016'].sum().reset_index()