注意:我的第一个问题就在这里。原谅缺乏细节或信息。如果需要,非常乐意澄清。
我在Mac上运行TensorFlow 1.0.0并且在使用learn.Estimator类时我一直收到此警告
警告:tensorflow:从:25:呼叫 fit(来自tensorflow.contrib.learn.python.learn.estimators.estimator) y被弃用,将在2016-12-01之后删除。 更新说明:Estimator与Scikit Learn分离 接口通过移入单独的类SKCompat。参数x,y和 batch_size仅在SKCompat类中可用,Estimator将 只接受input_fn。示例转换:est = Estimator(...) - > est = SKCompat(Estimator(...))
我已经尝试过这个课程,并且没有关于它的信息。完整代码发布在这里
https://github.com/austinmwhaley/DeepFarm/blob/master/prototype_1.ipynb
如果有任何其他人需要的信息,请告诉我
答案 0 :(得分:5)
您可以从tensorflow.contrib.learn.python导入SKCompat:
from tensorflow.contrib.learn.python import SKCompat
然后使用SKCompat()包装您的估算器,例如像这样:
classifier = SKCompat(tf.contrib.learn.LinearClassifier(args))
答案 1 :(得分:3)
或者您只是使用updated Estimator API of TensorFlow r1.1
模型定义的API非常相似,仅对参数,返回类型或函数名称进行了一些小的更改。这是我用过的一个例子:
def model_fn():
def _build_model(features, labels, mode, params):
# 1. Configure the model via TensorFlow operations
# Connect the first hidden layer to input layer (features) with relu activation
y = tf.contrib.layers.fully_connected(features, num_outputs=64, activation_fn=tf.nn.relu,
weights_initializer=tf.contrib.layers.xavier_initializer())
y = tf.contrib.layers.fully_connected(y, num_outputs=64, activation_fn=tf.nn.relu,
weights_initializer=tf.contrib.layers.xavier_initializer())
y = tf.contrib.layers.fully_connected(y, num_outputs=1, activation_fn=tf.nn.sigmoid,
weights_initializer=tf.contrib.layers.xavier_initializer())
predictions = y
# 2. Define the loss function for training/evaluation
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
loss = tf.reduce_mean((predictions - labels) ** 2)
else:
loss = None
if mode != tf.estimator.ModeKeys.PREDICT:
eval_metric_ops = {
"rmse": tf.metrics.root_mean_squared_error(tf.cast(labels, tf.float32), predictions),
"accuracy": tf.metrics.accuracy(tf.cast(labels, tf.float32), predictions),
"precision": tf.metrics.precision(tf.cast(labels, tf.float32), predictions)
}
else:
eval_metric_ops = None
# 3. Define the training operation/optimizer
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=0.001,
optimizer="Adam")
else:
train_op = None
if mode == tf.estimator.ModeKeys.PREDICT:
predictions_dict = {"pred": predictions}
else:
predictions_dict = None
# 5. Return predictions/loss/train_op/eval_metric_ops in ModelFnOps object
return tf.estimator.EstimatorSpec(mode=mode,
predictions=predictions_dict,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
return _build_model
你可以使用这个模型,然后像这样:
e = tf.estimator.Estimator(model_fn=model_fn(), params=None)
e.train(input_fn=input_fn(), steps=1000)
TensorFlow r1.1的输入函数示例可以在我的答案here中找到。