我使用BEAST运行祖先状态重建,这给了我一个像这样的Nexus文件
#NEXUS
Begin taxa;
Dimensions ntax=93;
Taxlabels
adan1251
blag1240-nule
wers1238-marit
;
End;
Begin trees;
Translate
1 adan1251,
2 blag1240-nule,
3 wers1238-marit
;
tree STATE_0 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_1 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:1.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_2 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:2.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_3 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:3.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_4 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:4.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
End;
(除了20倍的分类群,2000倍的树木和树木实际上有所不同。)
我想想想内心节点和tip节点中词汇项目的重建,似乎 ape 可能是一个很好的工具,因为它可以编写脚本,它可以阅读Nexus文件(我尝试使用read.nexus(" filename.nex"),似乎str是合理的)并且从http://ape-package.ird.fr/ape_screenshots.html判断它可以以一种很好的格式显示重建:
如何构建 ape ,根据10000个不同的Newick树的注释(thermo
)中给出的数据构建类似此[&...]
树的内容来自原始数据的共识树?