我正在尝试使用列组合在Pandas DataFrame中创建新列。由于我不知道如何使用生成的组合作为索引,我尝试将组合转换为字符串,但这也无效。
import itertools as iter
def pset(lst):
comb = (iter.combinations(lst, l) for l in range(2,3))
return list(iter.chain.from_iterable(comb))
temp = pset(transactions)
t = str(temp[0]).strip(" ")
transactions[[t]]
这给了我一个错误
KeyError: '["\'A\', \'B\'"] not in index'
这里A和B是数据框中的我的列。
transaction dataset:
A,B,C,D,E,F,G
1,0,1,1,0,1,1
1,1,1,1,0,1,0
1,0,0,1,0,1,0
0,0,1,1,1,0,0
1,0,0,1,1,1,0
0,1,1,1,1,1,1
Expected output Expected output:
A,B A,C A,D
1 2 4
答案 0 :(得分:0)
您得到这样的预期输出,df
是您发布的交易数据集。 (这个解决方案是用Python 2.7制作的,我希望它在Python 3中的工作原理相同)
import itertools as iter
import pandas as pd
colComb = [a for a in iter.combinations(df.columns,2)]
newCols = [','.join(colComb[i]) for i in range(len(colComb))]
Out = pd.DataFrame(columns = newCols)
for i in range(len(colComb)):
Out.loc[0,newCols[i]] = df[(df[colComb[i][0]] == 1) & (df[colComb[i][1]] == 1)][colComb[i][0]].count()
输出:
A,B A,C A,D A,E A,F A,G B,C B,D B,E B,F B,G C,D C,E C,F C,G D,E D,F D,G E,F \
0 1 2 4 1 4 1 2 2 1 2 1 4 2 3 2 3 5 2 2
E,G F,G
0 1 2
根据需要进行转置:
OT = Out.T
OT.columns = ["Count"]
输出:
Count
A,B 1
A,C 2
A,D 4
A,E 1
A,F 4
A,G 1
B,C 2
B,D 2
B,E 1
B,F 2
B,G 1
C,D 4
C,E 2
C,F 3
C,G 2
D,E 3
D,F 5
D,G 2
E,F 2
E,G 1
F,G 2
编辑:
改进代码以使用更高维度:
import itertools as iter
import pandas as pd
import numpy as np
dim = 2
colComb = [a for a in iter.combinations(df.columns,dim)]
newCols = [','.join(colComb[i]) for i in range(len(colComb))]
Out = pd.DataFrame(columns = newCols)
for i in range(len(colComb)):
Out.loc[0,newCols[i]] = df[np.sum(df[list(colComb[i])],axis=1) == dim][colComb[i][0]].count()
编辑:
两个维度的代码快得多:
cols = []
vals = []
for i in range(len(df.columns)):
for j in range(i+1,len(df.columns)):
cols.append(df.columns[i]+','+df.columns[j])
vals.append(np.multiply(df[df.columns[i]],df[df.columns[j]]).sum())
Out = pd.DataFrame(columns=cols)
Out.loc[0] = vals
Out = Out.astype(int)
另一种编辑,更快的解决方案,可以使用更高的维度:
vals = []
colComb = [a for a in iter.combinations(df.columns,dim)]
cols = [','.join(colComb[i]) for i in range(len(colComb))]
vals = []
for C in colComb:
v = df[C[0]]
for i in range(1,len(C)):
v = np.multiply(v,df[C[i]])
vals.append(v.sum())
dd = pd.DataFrame(columns=cols)
dd.loc[0] = vals
dd = dd.astype(int)
它应该至少工作3-4倍。