如何列出节点所依赖的所有Tensorflow变量/常量/占位符?
示例1(添加常量):
CREATE TRIGGER AccidentsTrigger
ON [Accidents]
INSTEAD OF INSERT
AS BEGIN
SET NOCOUNT ON
IF (SELECT [second_road_class] FROM INSERTED) LIKE '-1'
BEGIN
UPDATE [Accidents]
SET [second_road_class] = '6'
WHERE [second_road_class] = '-1'
END
END
我希望有一个函数import tensorflow as tf
a = tf.constant(1, name = 'a')
b = tf.constant(3, name = 'b')
c = tf.constant(9, name = 'c')
d = tf.add(a, b, name='d')
e = tf.add(d, c, name='e')
sess = tf.Session()
print(sess.run([d, e]))
,例如:
list_dependencies()
返回list_dependencies(d)
['a', 'b']
返回list_dependencies(e)
示例2(占位符和权重矩阵之间的矩阵乘法,然后添加偏差向量):
['a', 'b', 'c']
我希望有一个函数tf.set_random_seed(1)
input_size = 5
output_size = 3
input = tf.placeholder(tf.float32, shape=[1, input_size], name='input')
W = tf.get_variable(
"W",
shape=[input_size, output_size],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(
"b",
shape=[output_size],
initializer=tf.constant_initializer(2))
output = tf.matmul(input, W, name="output")
output_bias = tf.nn.xw_plus_b(input, W, b, name="output_bias")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run([output,output_bias], feed_dict={input: [[2]*input_size]}))
,例如:
list_dependencies()
返回list_dependencies(output)
['W', 'input']
返回list_dependencies(output_bias)
答案 0 :(得分:9)
以下是我用于此的实用程序(来自https://github.com/yaroslavvb/stuff/blob/master/linearize/linearize.py)
# computation flows from parents to children
def parents(op):
return set(input.op for input in op.inputs)
def children(op):
return set(op for out in op.outputs for op in out.consumers())
def get_graph():
"""Creates dictionary {node: {child1, child2, ..},..} for current
TensorFlow graph. Result is compatible with networkx/toposort"""
ops = tf.get_default_graph().get_operations()
return {op: children(op) for op in ops}
def print_tf_graph(graph):
"""Prints tensorflow graph in dictionary form."""
for node in graph:
for child in graph[node]:
print("%s -> %s" % (node.name, child.name))
这些功能适用于操作。要获得产生张量t
的操作,请使用t.op
。要获得由op
生成的张量,请使用op.outputs
答案 1 :(得分:3)
Yaroslav Bulatov's answer很棒,我只需添加一个使用雅罗斯拉夫get_graph()
和children()
方法的绘图功能:
import matplotlib.pyplot as plt
import networkx as nx
def plot_graph(G):
'''Plot a DAG using NetworkX'''
def mapping(node):
return node.name
G = nx.DiGraph(G)
nx.relabel_nodes(G, mapping, copy=False)
nx.draw(G, cmap = plt.get_cmap('jet'), with_labels = True)
plt.show()
plot_graph(get_graph())
从问题中绘制示例1:
import matplotlib.pyplot as plt
import networkx as nx
import tensorflow as tf
def children(op):
return set(op for out in op.outputs for op in out.consumers())
def get_graph():
"""Creates dictionary {node: {child1, child2, ..},..} for current
TensorFlow graph. Result is compatible with networkx/toposort"""
print('get_graph')
ops = tf.get_default_graph().get_operations()
return {op: children(op) for op in ops}
def plot_graph(G):
'''Plot a DAG using NetworkX'''
def mapping(node):
return node.name
G = nx.DiGraph(G)
nx.relabel_nodes(G, mapping, copy=False)
nx.draw(G, cmap = plt.get_cmap('jet'), with_labels = True)
plt.show()
a = tf.constant(1, name = 'a')
b = tf.constant(3, name = 'b')
c = tf.constant(9, name = 'c')
d = tf.add(a, b, name='d')
e = tf.add(d, c, name='e')
sess = tf.Session()
print(sess.run([d, e]))
plot_graph(get_graph())
输出:
从问题中绘制示例2:
如果您使用的是Microsoft Windows,则可能会遇到此问题:Python Error (ValueError: _getfullpathname: embedded null character),在这种情况下,您需要修补matplotlib链接说明。
答案 2 :(得分:0)
在某些情况下,可能想要找到所有与“输出”张量相关的“输入”变量,例如图的丢失。为此,以下代码片段可能有用(受上述代码启发):
def findVars(atensor):
allinputs=atensor.op.inputs
if len(allinputs)==0:
if atensor.op.type == 'VariableV2' or atensor.op.type == 'Variable':
return set([atensor.op])
a=set()
for t in allinputs:
a=a | findVars(t)
return a
这可用于调试以找出图中的连接丢失的地方。
答案 3 :(得分:0)
这些都是很好的答案,我将添加一种简单的方法,以一种不太易读的格式生成依赖关系,但对于快速调试很有用。
tf.get_default_graph().as_graph_def()
将图形中的操作生成为简单字典的打印,如下所示。每个OP都易于通过其属性和输入来按名称进行查找,从而使您可以遵循依赖关系。
import tensorflow as tf
a = tf.placeholder(tf.float32, name='placeholder_1')
b = tf.placeholder(tf.float32, name='placeholder_2')
c = a + b
tf.get_default_graph().as_graph_def()
Out[14]:
node {
name: "placeholder_1"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
unknown_rank: true
}
}
}
}
node {
name: "placeholder_2"
op: "Placeholder"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
unknown_rank: true
}
}
}
}
node {
name: "add"
op: "Add"
input: "placeholder_1"
input: "placeholder_2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
versions {
producer: 27
}