我需要一个MAPE函数,但是我无法在标准软件包中找到它......下面,我实现了这个函数。
def mape(actual, predict):
tmp, n = 0.0, 0
for i in range(0, len(actual)):
if actual[i] <> 0:
tmp += math.fabs(actual[i]-predict[i])/actual[i]
n += 1
return (tmp/n)
我不喜欢它,它在速度方面超级不理想。如何将代码重写为Pythonic方式并提高速度?
答案 0 :(得分:6)
这是masking
-
def mape_vectorized(a, b):
mask = a <> 0
return (np.fabs(a[mask] - b[mask])/a[mask]).mean()
在计算masking
之后division
可能是一个速度更快的
def mape_vectorized_v2(a, b):
mask = a <> 0
return (np.fabs(a - b)/a)[mask].mean()
运行时测试 -
In [217]: a = np.random.randint(-10,10,(10000))
...: b = np.random.randint(-10,10,(10000))
...:
In [218]: %timeit mape(a,b)
100 loops, best of 3: 11.7 ms per loop
In [219]: %timeit mape_vectorized(a,b)
1000 loops, best of 3: 273 µs per loop
In [220]: %timeit mape_vectorized_v2(a,b)
1000 loops, best of 3: 220 µs per loop
答案 1 :(得分:0)
使用def customReduce[CC1[A] <: Iterable[A], CC2[A] <: Iterable[A]](foos: CC1[Foo[CC2]])(implicit
factory: Factory[Int, CC1[Int]]
): Foo[CC1] = Foo(foos.flatMap(_.foo).to(factory))
println(customReduce(Seq(Foo(Seq(1))))) // Foo(List(1))
掩盖被零除的另一种类似方法是:
masked_Arrays