我正在尝试使用Python 3.5而不是Python 2.7在Spark中运行线性回归。所以首先我导出了PYSPARK_PHTHON = python3。我收到错误"没有名为numpy"的模块。我试着" pip install numpy"但是pip没有识别设置PYSPARK_PYTHON。我怎么请pip为3.5安装numpy?谢谢......
$ export PYSPARK_PYTHON=python3
$ spark-submit linreg.py
....
Traceback (most recent call last):
File "/home/yoda/Code/idenlink-examples/test22-spark-linreg/linreg.py", line 115, in <module>
from pyspark.ml.linalg import Vectors
File "/home/yoda/install/spark/python/lib/pyspark.zip/pyspark/ml/__init__.py", line 22, in <module>
File "/home/yoda/install/spark/python/lib/pyspark.zip/pyspark/ml/base.py", line 21, in <module>
File "/home/yoda/install/spark/python/lib/pyspark.zip/pyspark/ml/param/__init__.py", line 26, in <module>
ImportError: No module named 'numpy'
$ pip install numpy
Requirement already satisfied: numpy in /home/yoda/.local/lib/python2.7/site-packages
$ pyspark
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
17/02/09 20:29:20 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/02/09 20:29:20 WARN Utils: Your hostname, yoda-VirtualBox resolves to a loopback address: 127.0.1.1; using 10.0.2.15 instead (on interface enp0s3)
17/02/09 20:29:20 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
17/02/09 20:29:31 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.1.0
/_/
Using Python version 3.5.2 (default, Nov 17 2016 17:05:23)
SparkSession available as 'spark'.
>>> import site; site.getsitepackages()
['/usr/local/lib/python3.5/dist-packages', '/usr/lib/python3/dist-packages', '/usr/lib/python3.5/dist-packages']
>>>
答案 0 :(得分:0)
所以我实际上并不认为这是一个火花问题。在我看来,你需要环境方面的帮助。正如评论者所提到的,你需要设置一个python 3环境,激活它,然后安装numpy。请查看this以获得有关使用环境的一些帮助。设置python3环境后,你应该激活它,然后运行pip install numpy
或conda install numpy
,你应该好好去。
答案 1 :(得分:0)
如果您正在运行作业local
,则只需升级pyspark
自制软件:brew upgrade pyspark
,这应该可以解决大多数依赖性。