答案 0 :(得分:1)
add
需要fillna
,但df1
和df2
必须为NaN
个值,因为fillna
已将其删除:
print (df1.add(df2, fill_value=0).fillna(0).astype(int))
a b c
a1 1 2 0
a2 3 514 123
a3 5 539 134
indexes
和union
reindex
的另一个解决方案 - NaN
中的DataFrames
有效:
idx = df1.index.union(df2.index)
print (df1.reindex(idx, fill_value=0))
a b
a1 1 2
a2 3 4
a3 5 6
print (df2.reindex(idx, fill_value=0))
b c
a1 0 0
a2 510 123
a3 533 134
idx = df1.index.union(df2.index)
print (df1.reindex(idx, fill_value=0)
.add(df2.reindex(idx, fill_value=0), fill_value=0)
.astype(int))
a b c
a1 1 2 0
a2 3 514 123
a3 5 539 134
df1 = pd.DataFrame({'a':[1,3,5],
'b':[2,4,6]}, index=['a1','a2','a3'])
print (df1)
a b
a1 1 2
a2 3 4
a3 5 6
df2 = pd.DataFrame({'b':[510,533],
'c':[123,np.nan]}, index=['a2','a3'])
print (df2)
b c
a2 510 123.0
a3 533 NaN
print (df1.reindex(idx, fill_value=0).add(df2.reindex(idx, fill_value=0), fill_value=0))
a b c
a1 1.0 2 0.0
a2 3.0 514 123.0
a3 5.0 539 NaN
print (df1.add(df2, fill_value=0).fillna(0).astype(int))
a b c
a1 1 2 0
a2 3 514 123
a3 5 539 0 <- replace NaN to 0