一家石油公司生产三种品牌的石油:普通,多级和 最高。每种品牌的油由四种原油中的一种或多种组成,每种原油具有不同的润滑指数。有关原油库存的相关数据如下。
+-------------+-------------------+------------------+--------------------------+
| Crude Stock | Lubrication Index | Cost (€/barrell) | Supply per day (barrels) |
+-------------+-------------------+------------------+--------------------------+
| 1 | 20 | 7,10 | 1000 |
+-------------+-------------------+------------------+--------------------------+
| 2 | 40 | 8,50 | 1100 |
+-------------+-------------------+------------------+--------------------------+
| 3 | 30 | 7,70 | 1200 |
+-------------+-------------------+------------------+--------------------------+
| 4 | 55 | 9,00 | 1100 |
+-------------+-------------------+------------------+--------------------------+
每个品牌的油必须满足润滑指数和每个品牌的最低标准 因此以不同的价格出售。有关三个品牌的石油的相关数据如下 如下:
+------------+---------------------------+---------------+--------------+
| Brand | Minimum Lubrication index | Selling price | Daily demand |
+------------+---------------------------+---------------+--------------+
| Regular | 25 | 8,50 | 2000 |
+------------+---------------------------+---------------+--------------+
| Multigrade | 35 | 9,00 | 1500 |
+------------+---------------------------+---------------+--------------+
| Supreme | 50 | 10,00 | 750 |
+------------+---------------------------+---------------+--------------+
确定一天的最佳输出计划,假设生产可以是
出售或以可忽略的成本存储。
每日需求数据可能有其他解释。调查
以下:
(a)每日需求代表潜在销售额。换句话说,该模型应包含需求上限(上限)。什么是最佳利润?
(b)日常要求是严格的义务。换句话说,模型应该包含精确满足的需求约束。什么是最佳利润?
(c)每日需求代表最低销售承诺,但所有产出都可以出售。换句话说,该模型应允许生产超过每日承诺。什么是最佳利润?
我已经能够在Excel中构建以下模型并通过OpenSolver解决它,但我只能将常规油的混合物整合在一起。 我正试图通过Kenneth R. Baker的“使用电子表格进行优化建模”一书来解决这个问题,但我仍然坚持这个练习。虽然我可以从另一个混合问题转移逻辑,但我不确定如何一次构建多个混合的模型。 我把这个问题建模为不同原油库存成本的最小化问题。使用润滑指数数据,我将R-Lub指数的约束建立为线性约束。到目前为止,答案似乎适合普通石油。然而,使用这种方法,我不知道如何包括第二种多元油。
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| Decision Variables | | | | | | | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| | C1 | C2 | C3 | C4 | | | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| Inputs | 1000 | 0 | 1000 | 0 | | | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| | | | | | | | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| Objective Function | | | | | | Total | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| Cost | 7,10 € | 8,50 € | 7,70 € | 9,00 € | | 14.800,00 € | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| | | | | | | | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| Constraints | | | | | | LHS | | RHS |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| C1 supply | 1 | | | | | 1000 | <= | 1000 |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| C2 supply | | 1 | | | | 0 | <= | 1100 |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| C3 supply | | | 1 | | | 1000 | <= | 1200 |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| C4 supply | | | | 1 | | 0 | <= | 1100 |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| R- Lub Index | -5 | 15 | 5 | 30 | | 0 | >= | 0 |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| R- Output | 1 | 1 | 1 | 1 | | 2000 | = | 2000 |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| | | | | | | | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| Blending Data | | | | | | | | |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
| R- Lub | 20 | 40 | 30 | 55 | | 25 | >= | 25 |
+--------------------+--------+--------+--------+--------+--+-------------+----+------+
以下是使用Excel公式的模型:
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| Decision Variables | | | | | | | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| | C1 | C2 | C3 | C4 | | | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| Inputs | 1000 | 0 | 1000 | 0 | | | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| | | | | | | | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| Objective Function | | | | | | Total | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| Cost | 7,1 | 8,5 | 7,7 | 9 | | =SUMMENPRODUKT(B5:E5;B8:E8) | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| | | | | | | | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| Constraints | | | | | | LHS | | RHS |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| C1 supply | 1 | | | | | =SUMMENPRODUKT($B$5:$E$5;B11:E11) | <= | 1000 |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| C2 supply | | 1 | | | | =SUMMENPRODUKT($B$5:$E$5;B12:E12) | <= | 1100 |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| C3 supply | | | 1 | | | =SUMMENPRODUKT($B$5:$E$5;B13:E13) | <= | 1200 |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| C4 supply | | | | 1 | | =SUMMENPRODUKT($B$5:$E$5;B14:E14) | <= | 1100 |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| R- Lub Index | -5 | 15 | 5 | 30 | | =SUMMENPRODUKT($B$5:$E$5;B15:E15) | >= | 0 |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| R- Output | 1 | 1 | 1 | 1 | | =SUMMENPRODUKT($B$5:$E$5;B16:E16) | = | 2000 |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| | | | | | | | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| Blending Data | | | | | | | | |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
| R- Lub | 20 | 40 | 30 | 55 | | =SUMMENPRODUKT($B$5:$E$5;B19:E19)/SUMME($B$5:$E$5) | >= | 25 |
+--------------------+------+-----+------+----+--+----------------------------------------------------+----+------+
向正确的方向推动将是一个巨大的帮助。
答案 0 :(得分:2)
我认为您希望您的目标是利润,我将其定义为销售额的总和 - 成本总和。
要包括所有混合物,请为每种混合物生成产量,润滑油指数,成本和价值的计算。对所用库存量,产量和润滑油指数应用约束,并优化利润。
我将模型放在一起如下......
=SUM(G3:J3)
。{=SUMPRODUCT(G3:J3,TRANSPOSE($B$2:$B$5))/$K3}
。请注意,它是一个Control-Shift-Enter(CSE)公式,因为TRANSPOSE而需要。{=SUMPRODUCT(G3:J3,TRANSPOSE($C$2:$C$5))}
。这也是一个CSE公式。=K3*C8
。=SUM(G3:G5)
,填充在右侧。=SUM(N3:N5)-SUM(M3:M5)
。下面是解算器对话框的快照...
它做了以下......
$G$7 through $J$7
)确保不会违反可用库存量。$K$3 through $K$5
)适用于案例(a) - 不超过产品而不是需求。$L$3 through $L$5
)确保润滑油指数符合最低规格。以下是案例(a)的结果......
对于情况(b),将列K上的约束更改为“=”而不是“&lt; =”。以下是结果......
对于情况(c),将列K上的约束更改为“&gt; =”。以下是结果......
答案 1 :(得分:0)
我想我想出了一个解决方案,但我不确定这是否正确。
| Decision Variables | | | | | | | | | | | | | | | | |
|--------------------|---------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|---|--------------------------------|----|------|
| | C1R | C1M | C1S | C2R | C2M | C2S | C3R | C3M | C3S | C4R | C4M | C4S | | | | |
| Inputs | 1000 | 0 | 0 | 800 | 0 | 300 | 0 | 1200 | 0 | 200 | 300 | 600 | | | | |
| | | | | | | | | | | | | | | | | |
| Objective Function | | | | | | | | | | | | | | Total Profit (Selling - Cost) | | |
| Cost | 7,10 € | 7,10 € | 7,10 € | 8,50 € | 8,50 € | 8,50 € | 7,70 € | 7,70 € | 7,70 € | 9,00 € | 9,00 € | 9,00 € | | 3.910,00 € | | |
| | | | | | | | | | | | | | | | | |
| Constraints | | | | | | | | | | | | | | LHS | | RHS |
| Regular | -5 | | | 15 | | | 5 | | | 30 | | | | 13000 | >= | 0 |
| Multi | | -15 | | | 5 | | | -5 | | | 20 | | | 0 | >= | 0 |
| Supreme | | | -30 | | | -10 | | | -20 | | | 5 | | 0 | >= | 0 |
| C1 Supply | 1 | 1 | 1 | | | | | | | | | | | 1000 | <= | 1000 |
| C2 Supply | | | | 1 | 1 | 1 | | | | | | | | 1100 | <= | 1100 |
| C3 Supply | | | | | | | 1 | 1 | 1 | | | | | 1200 | <= | 1200 |
| C4 Supply | | | | | | | | | | 1 | 1 | 1 | | 1100 | <= | 1100 |
| Regular Demand | 1 | | | 1 | | | 1 | | | 1 | | | | 2000 | >= | 2000 |
| Multi Demand | | 1 | | | 1 | | | 1 | | | 1 | | | 1500 | >= | 1500 |
| Supreme Demand | | | 1 | | | 1 | | | 1 | | | 1 | | 900 | >= | 750 |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| Selling | | | | | | | | | | | | | | | | |
| Regular | 8,50 € | x | 2000 | = | 17.000,00 € | | | | | | | | | | | |
| Multi | 9,00 € | x | 1500 | = | 13.500,00 € | | | | | | | | | | | |
| Supreme | 10,00 € | x | 900 | = | 9.000,00 € | | | | | | | | | | | |
| | | | | | 39.500,00 € | | | | | | | | | | | |